DRAFT 2020 WATER MANAGEMENT PLAN

Beacon Rock Skamania, WA Photo by Tony Norris, BPA

Bonneville Power Administration U.S. Bureau of Reclamation U.S. Army Corps of Engineers

Table of Contents

1.	Int	roduction	1
2.	Go	verning Documents	1
	2.1.	Biological Assessments (BA)	
	2.2.	2019 Supplemental Consultation Package	
	2.3.	BiOps	
	2.4.	Additional Governing Documents	
3.	WM	MP Implementation Process	4
	3.1.	Technical Management Team (TMT)	4
	3.2.	Preparation of the WMP	4
	3.3.	Fish Passage Plan (FPP)	5
	3.4.	Non-ESA Operations	
4.	Col	lumbia River System Operation	6
	4.1.	Priorities	
	4.2.	Conflicts	
		1. FRM Draft versus Project Refill	8
		2. Spring Flow Management versus Project Refill and Summer Flow	
	•	gmentation	8
	4.2.		
	4.2.		
	4.2.		
	4.2.	J	
		Emergencies	
		1. Operational Emergencies	
		2. Fish Emergencies	
	4.3.		
		Fish Research	
_		1101 511110	
Э.		cision Points and Water Supply Forecasts	
	5.1. 5.2.	Water Management Decisions and Actions	
,			
υ.	6.1.	oject Operations	. 13 18
		1. Mountain Whitefish Flows	
		2. Rainbow Trout Flows	
	6.2.	Hungry Horse Dam	
	6.2.	• •	
	6.2.		
	6.2.		
	6.2.		
	6.2.		. 20 20
	6.2.		
		Albeni Falls Dam	
	6.3.		. 22
		2 Coordination	

6.3.3.	FRM Draft	. 22
6.3.4.	Refill Operations	. 22
6.3.5.	Summer Operations	. 22
6.4. Lib	by Dam	. 22
6.4.1.	Coordination	. 23
6.4.2.	Burbot	. 23
6.4.3.	Ramp Rates and Daily Shaping	. 23
6.4.4.	FRM	. 24
6.4.5.	Spring Operations	
6.4.6.	Bull Trout Flows	. 25
6.4.7.	Sturgeon Operation	. 26
6.4.8.	Post-Sturgeon Operation	. 27
6.4.9.	Summer Operations	. 27
6.5. Gra	nd Coulee Dam	. 28
6.5.1.	Winter/Spring Operations	. 28
6.5.2.	Summer Operations	. 29
6.5.3.	Banks Lake Summer Operation	. 30
6.5.4.	Project Maintenance	. 30
6.5.5.	Fall Refill	
6.5.6.	Lake Roosevelt Incremental Storage Release Project	
6.5.7.	Chum Flows	
6.5.8.	Priest Rapids Flow Objective	. 32
6.5.9.	Spill Operations	
	ef Joseph Dam	
6.7. Prie	est Rapids Dam	
6.7.1.	Spring Operations	. 32
6.7.2.	Hanford Reach Protection Flows	
6.8. Dw	orshak Dam	
6.8.1.	Spring Operations	
6.8.2.	Summer Operations	
6.8.3.	Fall/Winter Operations	
6.8.4.	Project Maintenance	
	wnlee Dam	
	ower Snake River Dams (Lower Granite, Little Goose, Lower Monumenta	
	r)	
	Reservoir Operations	
	Lower Granite Dam Flow Objectives	
	ver Columbia River Dams (McNary, John Day, The Dalles, Bonneville)	
	Reservoir Operations	
	McNary Dam Flow Objectives	
	Chum Operation	
	· Operations	
7.1. Car	nadian Storage for Flow Augmentation	
7.1.1.	Columbia River Treaty (Treaty) Storage	
7.1.2.	Non-Treaty Storage (NTS) Long Term Agreement	
7.2. Upp	per Snake River Reservoir Operation for Flow Augmentation	. 38

7.3. Bonneville Chum Operations	39
7.3.1. Chum Spawning Phase	
7.3.2. Chum Spawning Operational Steps	
7.3.3. Chum Incubation and Egress	42
7.3.4. Considerations for Dewatering Chum Redds	43
7.3.5. Chum Redd Dewatering and Alternative Maintenance Options	43
7.4. Description of Variable Draft Limits	43
7.5. Lake Roosevelt Incremental Storage Release Project of the Washing	gton State
Department of Ecology, Columbia River Water Management Program	44
7.5.1. Lake Roosevelt Incremental Storage Releases	44
7.5.2. Release Framework and Accounting for Lake Roosevelt Increme	ental Draft
45	
7.5.3. 2020 Operations	45
7.6. Public Coordination	45
8. Water Quality	45
8.1. Water Quality Plans	45
8.1.1. Total Dissolved Gas (TDG) Monitoring	46
9. Dry Water Year Operations	46

1. Introduction

The U.S. Army Corps of Engineers (Corps), Bureau of Reclamation (Reclamation), and Bonneville Power Administration (BPA), collectively referred to as the Action Agencies (AAs), have consulted with NOAA Fisheries and the U.S. Fish and Wildlife Service (USFWS) on the effects of operating the 14 Federal multi-purpose projects in the Columbia River System (CRS) on species listed as endangered or threatened under the Endangered Species Act (ESA). These consultations resulted in biological opinions (BiOps) from NOAA Fisheries and USFWS that identify CRS operations that are implemented by the AAs that will not jeopardize the continued existence or adversely modify designated critical habitat of ESA-listed species. The CRS BiOps that are currently in effect and other applicable governing documents are described below in Section 2.

The 2020 Water Management Plan (WMP) describes the AAs' plan for the 2020 water year (October 1, 2019 through September 30, 2020) for implementing the specific storage project and reservoir operations considered in the 2019 NOAA Fisheries Columbia River System Biological Opinion (2019 BiOp), the 2000 USFWS Federal Columbia River Power System (FCRPS) BiOp, as supplemented in 2006 for Libby Dam (collectively referred to as the 2000/2006 BiOp), and the 2019-2021 Spill Operation Agreement (2019-2021 Agreement). The AAs are currently engaged in ESA section 7 consultation with NOAA Fisheries and USFWS on CRS operations in the previously mentioned BiOps. Upon completion of these consultations and associated BiOps, the AAs will review and make any revisions to the 2020 WMP in coordination with the Technical Management Team (TMT).

The AAs are the final authorities on the content of the WMP after coordination with the sovereign inter-agency TMT to solicit their review, comment, and recommendations for consideration during preparation of the WMP. The WMP is consistent with the adaptive management provisions considered in the 2019 BiOp and operations contained in the applicable BiOps and the Columbia Basin Fish Accords (Accords). System operations contained in the WMP may be adjusted in-season in coordination with the TMT. The AAs will prepare seasonal updates to the 2020 WMP in coordination with the TMT and posted on the following website.

http://pweb.crohms.org/tmt/documents/wmp/

2. Governing Documents

Additional information regarding operations described in the WMP may be found in the following governing documents.

2.1. Biological Assessments (BA)

• 1999 BA for the Effects of FCRPS Operations on Columbia Basin Bull Trout and Kootenai River White Sturgeon (Corps, BPA, and Reclamation)

The AAs submitted a BA to USFWS in December 1999 addressing the effects of 2000-2010 FCRPS operations on Columbia Basin bull trout and Kootenai River white sturgeon. The BA addressed FCRPS project operations on the Columbia River and on the Snake River downstream of Lower Granite Dam. The December 1999 BA is incorporated by reference into the BA titled, "Multispecies Biological Assessment of the Federal Columbia River Power System," dated December 21, 1999, that may be found on the following website.

http://www.usbr.gov/pn/fcrps/documents/1999ba.pdf

 2004 BA on the Effects of Libby Dam Operations on Kootenai River White Sturgeon (Corps and BPA)

Due to the critical habitat designation and new information on the Kootenai River white sturgeon, the Corps and BPA re-initiated consultation on the effects of Libby Dam operations on the Kootenai River sturgeon and its critical habitat. The AAs submitted a BA to the USFWS in July 2004 to supplement the 1999 FCRPS BA with this additional information. A complete administrative record of this consultation is on file at the USFWS Upper Columbia Office in Spokane, WA.

• 2007 BA on the Upper Snake (Reclamation)

Reclamation submitted a BA to NOAA Fisheries in August 2007 that described actions involving operations and routine maintenance at 12 Federal projects located upstream of Brownlee Reservoir and evaluated the effects of those actions on ESA-listed fish species. The BA may be found on the following website.

http://www.usbr.gov/pn/programs/esa/uppersnake/index.html

2.2. 2019 Supplemental Consultation Package

• 2019 Supplemental Consultation Package (Corps, BPA, and Reclamation)

The 2019 Supplemental Consultation Package incorporates the following three consultation documents. On November 2, 2018, the Reclamation submitted a consultation package to NOAA Fisheries titled, "ESA Section 7(a)(2) Initiation of Formal Consultation for the Operations and Maintenance of the Columbia River System on NOAA Fisheries Listed Species and Designated Critical Habitat," that requested initiation of formal consultation for the ongoing operations and maintenance of the fourteen federal multiple-use projects in the Columbia River System. On December 18, 2018, the Corps submitted to NOAA Fisheries a modification to the Proposed Action to include the "2019-2021 Spill Operation Agreement." On March 8, 2019, the Corps,

submitted to NOAA Fisheries four additional conservation measures to the Proposed Action. The 2019 Supplemental Consultation Package may be found on the following website.

https://www.salmonrecovery.gov/BiologicalOpinions/FCRPSBiOp.aspx

2.3. BiOps

• 2000 USFWS FCRPS BiOp

The 2000 USFWS FCRPS BiOp titled, "Effects to Listed Species from Operation of the Federal Columbia River Power System", was issued on December 20, 2000, and evaluates the effects of operating the FCRPS on threatened Columbia Basin bull trout in areas downstream of Hells Canyon Dam and in the Upper Columbia Basin, and on endangered Kootenai River white sturgeon. This BiOp may be found on the following website.

http://www.fws.gov/pacific/finalbiop/BiOp.html

• 2006 USFWS Libby Dam BiOp

The 2006 USFWS Libby BiOp titled, "The Effects of Libby Dam Operations on the Kootenai River White Sturgeon, Bull Trout, and Kootenai Sturgeon Critical Habitat," was issued on February 16, 2006, and supplemented the USFWS 2000 FCRPS BiOp. The document may be found on the following website.

http://www.salmonrecovery.gov/BiologicalOpinions/LibbySturgeonBiOp.aspx

In 2008, the USFWS issued a Clarified RPA for the 2006 Libby Dam BiOp, in order to determine the success or non-success of Libby Dam sturgeon operations. Pursuant to this 2008 Clarified RPA, the Corps operates Libby Dam to provide additional flows to benefit Kootenai River white sturgeon. Operations for this year are further detailed in Section 6.4 below (Libby Dam Project Operations).

• 2008 NOAA Fisheries Upper Snake BiOp

The 2008 NOAA Fisheries Upper Snake BiOp titled, "Consultation for the Operation and Maintenance of 10 U.S. Bureau of Reclamation Projects and 2 Related Actions in the Upper Snake River above Brownlee Reservoir (Revised and Reissued Pursuant to court order, *American Rivers v. NOAA Fisheries*, CV 04-0061-RE (D. Or. Feb. 27, 2006,))", and dated May 5, 2008. The document may be found on the following website.

http://www.westcoast.fisheries.noaa.gov/fish_passage/fcrps_opinion/federal_columbia_river_power_system.html

• 2019 NOAA Fisheries CRS BiOp

The 2019 NOAA Fisheries CRS BiOp (2019 BiOp) titled, "Endangered Species Act (ESA) Section 7(a)(2) Biological Opinion and Magnuson-Stevens Fishery Conservation and Management Act Essential Fish Habitat Response, Continued Operation and Maintenance of the

Columbia River System," dated March 29, 2019, replaced the 2008/2010/2014 NOAA Fisheries FCRPS BiOp. The 2019 BiOp considered the effects of the Proposed Action in the AAs' 2019 Supplemented Consultation Package. The 2019 NOAA Fisheries CRS BiOp and related documents may be found on the following website.

http://www.salmonrecovery.gov/BiologicalOpinions/FCRPSBiOp.aspx

2.4. Additional Governing Documents

• Corps 2003 Columbia River Treaty Flood Control Operating Plan (FCOP)

The Columbia River Treaty between Canada and the United States of America provides that the powers and duties of the United States Entity include the preparation of a Flood Control Operation Plan (FCOP) for Canadian storage in the Upper Columbia River Basin. The purpose of the FCOP for Canadian storage is to prescribe criteria and procedures by which the Canadian Entity will operate Mica, Duncan, and Arrow Reservoirs to achieve flood risk management (FRM) objectives in the United States and Canada. Because Canadian storage is an integral part of the overall Columbia River reservoir system, the FCOP for this storage must be related to the flood control plan of the Columbia River as a whole. The principles of the Columbia River System operation are therefore contained in the FCOP, which may be found on the following website:

http://www.nwd-wc.usace.army.mil/cafe/forecast/FCOP/FCOP2003.pdf

3. WMP Implementation Process

3.1. Technical Management Team (TMT)

The TMT is an inter-agency technical group comprised of sovereign representatives responsible for making in-season recommendations to the AAs on dam and reservoir operations in an effort to meet the expectations of the applicable BiOps (listed above) and accommodate changing conditions, such as water supply, fish migration, water quality, new information, and maintenance issues. The TMT consists of representatives from the AAs, NOAA Fisheries, USFWS, the states of Oregon, Washington, Idaho, and Montana, and Tribal sovereigns.

3.2. Preparation of the WMP

Each fall, the AAs prepare an annual WMP (draft by October 1 and final by December 31). The AAs prepared this WMP for the 2020 water year consistent with the 2019 BiOp and the 2000/2006 BiOp. This WMP describes the planned operations of the CRS dams and reservoirs for the 2020 water year (October 1, 2019, through September 30, 2020)¹. The operations are designed to:

¹ In the preparation of the draft WMP, very little information is available about the upcoming year's water supply; therefore, the draft provides a general description of planned operations for that water year.

- Implement water management measures consistent with actions considered in their respective BiOps.
- 2. Assist in meeting the biological performance standards and CSS spill objectives specified in the BiOps in combination with other actions or operations identified in the 2019 BiOp.
- 3. Meet other CRS project requirements and purposes such as FRM, power system, irrigation, navigation, recreation, and conservation of fish and wildlife. Additional information regarding Columbia River FRM may be found on the following website.

http://www.nwd.usace.army.mil/Missions/Water/Columbia/Flood-Control/

 Take into account recommendations contained in the applicable Northwest Power and Conservation Council's Fish and Wildlife Program and amendments.

The WMP also includes special operations planned for the year (e.g., special tests, maintenance, construction activities, etc.) known at the time the WMP is developed. Throughout the season, the AAs will utilize the TMT forum to provide the region with seasonal updates on water supply forecasts and specific project operations. These will be available on the following website.

http://pweb.crohms.org/tmt/documents/wmp/

3.3. Fish Passage Plan (FPP)

The Corps coordinates with regional agencies to prepare an annual Fish Passage Plan (FPP) that provides detailed operating criteria for project fish passage facilities, powerhouses, and spillways to facilitate the safe and efficient passage of migratory fish. The FPP contains appendices that describe special operations for fish research studies, the juvenile fish transportation program, operation of turbine units within 1% of best efficiency, spill for fish passage, total dissolved gas (TDG) monitoring, and dewatering procedures. The FPP is coordinated through the inter-agency Fish Passage Operations and Maintenance (FPOM) Coordination Team and is available on the following website.

http://pweb.crohms.org/tmt/documents/fpp/

3.4. Non-ESA Operations

Each year the AAs implement water management actions to achieve other project purposes in addition to those required under the ESA, including: FRM, hydropower generation, irrigation, navigation, recreation, and conservation of fish and wildlife. Table 1 defines non-ESA listed fish and wildlife conservation related water management actions that may be implemented and the time of year such actions typically occur, and are further described below.

Table 1. Location and Timing of Water Management Actions Related to non-ESA listed Fish and Wildlife Species.

Project	Water Management Actions for:	Time of Year
Keenleyside (Arrow)	Mountain whitefish	December – January
Keenleyside (Arrow)	Rainbow trout	April – June
Duncan	Whitefish	March – May
Libby	Burbot (temperature)	October - February
Dworshak	Hatchery release (increased flow)	March-April
Hanford Reach Fall Chinook Protection Program Agreement	Fall Chinook	October – June
McNary	Waterfowl Nesting	March – May
McNary	Waterfowl Hunting Enhancement	October - January
Ice Harbor	Waterfowl Hunting Enhancement	October - January
Little Goose	Waterfowl Hunting Enhancement	October - January
Bonneville	Fall Chinook	October - May

4. Columbia River System Operation

4.1. Priorities

The 2019 BiOp and the 2000/2006 BiOps include the following strategies for flow management.

- Provide minimum project flows in the fall and winter to support fisheries below the storage projects (e.g., Hungry Horse, Dworshak, Albeni Falls, and Libby). Limit the winter/spring drawdown of storage reservoirs to increase spring flows and the probability of reservoir refill.
- 2. Draft from storage reservoirs in the summer to increase summer flows.
- Provide adequate flows in the fall and winter to support mainstem chum spawning and incubation below Bonneville Dam.

To implement these strategies the Action Agencies have developed the following priorities (in order) for flow management and individual reservoir operations after ensuring adequate FRM is provided.

- 1. Operate storage projects to meet minimum flow and ramp rate criteria for resident fish.
- 2. Attempt to refill the storage projects by the end of June/early July (exact date to be determined during in season management) to provide summer flow augmentation consistent with available water supply, spring operations, and FRM requirements (2019 BiOp, page 31). For example, a late snowmelt runoff may result in a later refill in order to avoid excessive spill. Target refill dates for the storage projects are listed below in Table 5, and further described in the 2019 BiOp (page 30).

- 3. Operate storage projects to be at their FRM elevation in early April (the exact date to be determined during in-season management) to maximize flows for the spring out-migration of juvenile salmon (2019 BiOp, page 31 and 2018 CRSPA, page 42).
- 4. Operate Grand Coulee to balance the needs of chum flow augmentation and spring flow augmentation from the start of chum spawning in <u>October or</u> November through the end of chum emergence (approximately April) to maintain sufficient water depth to protect chum spawning and incubation habitat at the Ives Island complex below Bonneville Dam.

In addition to operations intended to benefit ESA-listed anadromous fish, the AAs operate the CRS projects to benefit ESA-listed resident fish (e.g., bull trout, Kootenai River white sturgeon) that may be affected by CRS operations. Projects are also operated to meet minimum outflows; avoid involuntary spill and resulting elevated TDG; avoid fluctuations in outflow that may strand fish and degrade fish habitat; reducinge the cross-sectional area of Snake River projects in order to minimize fish travel times (2018 CRSPA, page 202); and to provide specific releases from storage projects in order to improve downstream flows and water temperatures for fish. These operations are generally the highest priority because of the direct linkage between a particular operation and impacts on fish near the dam.

Because the water year begins on October 1, the flow objectives described in the 2018 CRSPA, (page 41) are not encountered in the same order as various operations described in the 2019 BiOp (e.g., chum spawning flows will be determined prior to spring and summer migration flows, even though chum flows are a lower priority (2019 BiOp, page 268)). However, the AAs will make every effort to follow flow priorities while implementing operations as they occur chronologically during the year. Objectives include:

- 1. Drafting storage projects to their August 31 or September 30 elevation targets (2019 BiOp, page 31) are a higher priority than the summer flow objectives (2018 CRSPA, page 41) in order to meet other project uses and reserve water in storage for the following year.
- 2. Operate storage projects to be at their FRM elevation in early April (the exact date to be determined during in-season management) (2018 CRSPA, page 42). These levels will vary with the runoff forecast. The ability to meet this objective is affected by the quantity of water released for FRM, changes in runoff volume forecasts, power generation and unit availability, planned and unplanned pool restrictions, draft rate restrictions, water quality, and fishery flows to support both lower Columbia River chum and Hanford Reach fall Chinook spawning, as well as minimum flow requirements below the projects.
- 3. Attempt to refill the storage projects by the end of June/early July (exact date to be determined during in season management) to provide summer flow augmentation consistent with available water supply, spring operations, and FRM requirements (2018 CRSPA, page 42). The 2018 CRSPA provides additional project specific refill dates on page 43 (for example regarding Libby Dam, "... attempt to refill within 5 feet of full (full is 2,459 feet) in July or early August ..."). Through TMT and in-season management, priority for spring flow may be adjusted with a recognition that summer refill may be compromised.

4. Manage the available storage to augment summer (July and August) flows in the lower Columbia River and lower Snake River in an attempt to meet flow objectives and to minimize increases in water temperature, as described below in the project-specific sections (Section 6).

These objectives are intended as general guidelines. Consistent with actions considered in the current BiOps, the AAs adaptively manage to adjust CRS operations based on best available science, and knowledge about current conditions in the system and effects due to management actions. Conditions that are continually changing include: information on fish migration, stock status, biological requirements, biological effectiveness, and hydrologic and environmental conditions.

4.2. Conflicts

System managers recognize that water supply conditions are variable and unpredictable and there is often insufficient water to accomplish all the objectives addressed in the current BiOps for the benefit of listed fish. This may be further complicated by responsibilities to provide for other authorized purposes such as FRM, hydropower generation, irrigation, recreation, and navigation needs. Management of water resources for any one fish species may conflict with the availability of water for other fish species or project purposes. The AAs, in coordination with regional sovereign representatives through the TMT, consider the multiple uses of the system, while prioritizing measures to benefit listed species. Below are some of the typical conflicts that may occur.

4.2.1. FRM Draft versus Project Refill

The 2019 BiOp and the 2000/2006 BiOp specify operation of storage projects at their FRM elevation targets in early April (the exact date to be determined during in-season management) (2019 BiOp, page 31). This is designed to increase the likelihood of refill and to maximize both spring flow management and summer flow augmentation.

FRM procedures specify the amount of storage needed to provide flood damage reduction. In furtherance of the flood damage reduction objective, storage space is provided to minimize the risk due to forecast and runoff uncertainty. In an effort to reduce forecast error and to better anticipate the runoff timing or water supply, the AAs and the Northwest River Forecast Center (NWRFC) use the best available science to compute water supply forecasts. An annual forecast review will occur each fall by the Columbia River Forecast Group (CRFG) to evaluate the performance of the current forecast procedures. The CRFG will evaluate new forecasting techniques for potential implementation.

4.2.2. Spring Flow Management versus Project Refill and Summer Flow Augmentation

FRM elevations are determined based on water supply, runoff and hydrologic model forecasts and can change significantly from one forecast to the next. Changes in forecasts throughout the FRM season can make it difficult to achieve spring flow and project refill objectives. The summer flow objective at McNary is supported by various flow augmentation measures. There

is a limited amount of water available for flow augmentation and summer flow objectives are provided as a biological guideline.

4.2.3. Chum Flow versus Project Refill and Spring Flow Management

Providing a Bonneville Dam tailwater elevation level conducive to chum spawning and incubation in the Ives Island complex typically requires flow augmentation from storage reservoirs before reliable flow forecast information becomes available. Refill to the April 10 elevation objective at Grand Coulee has priority over the flow augmentation required to maintain the chum spawning protection through emergence level which is set in November -December and protection level set in December and persists through chum fry emergence, typically early April. Although water supply forecasts are available in November and December, the forecast errors are very large. Water supply forecasts become incrementally more reliable as time between the forecast and the forecast period decreases. If the tailwater elevation level selected during the spawning season is too high (requiring higher flows and potentially requiring deeper reservoir drafts), there is an increased risk of missing refill to the April 10 elevation objective at Grand Coulee thereby reducing spring flow augmentation if the higher flows are maintained throughout the chum incubation period. If the flows must be reduced during the incubation period to target refill, then there is the risk of dewatering chum redds. When this conflict arises, TMT will discuss balancing project refill and spring flows that benefit multiple ESUs that have priority over maintaining the chum tailwater elevations set in December.

4.2.4. Libby Dam Sturgeon Flow versus Summer Flow Augmentation

Water released from Libby Dam for spring sturgeon spawning flows (pulse) during May, June, and into July can reduce the probability of reservoir refill, and consequently the amount of the water available for summer flow augmentation from Libby. Although an effort will be made to balance sturgeon flows and reservoir refill, water released for sturgeon spawning flows will take a higher priority than refilling by early July.

4.2.5. Fish Operations versus Other Project Uses

In addition to FRM operations, there are other project purposes that may conflict with operations for the benefit of fish. For example, operations for irrigation and reservoir recreation may conflict with releases of water for flow augmentation. TMT will discuss these issues when they arise and may make recommendations to the AA with responsibility for the operational decisions.

4.2.6. Conflicts and Priorities Summary

The conflicts described above pose many challenges to the AAs in meeting the multiple uses of the CRS. The priorities for flow management and individual reservoir operations outlined in section 4.1 will assist the AAs in operational decision-making.

Discussion of conflicts between operational requirements and alternatives for addressing such conflicts will occur in TMT. Ultimately, the AA with the authority and responsibility for the operation to meet authorized project purposes will make the decision.

4.3. Emergencies

The WMP, the 2019 BiOp, the 2000/2006 BiOp, and the current FPP acknowledge that emergencies and other unexpected events occur and may cause interruptions or adjustments of fish protection measures. Such deviations may be short in duration, such as a response to an unexpected unit outage or power line failure, or a search and rescue operation, or longer in duration, such as what was experienced in 2001 in response to the low water conditions. Emergency operations will be managed in accordance with the TMT Emergency Protocols (included in the WMP as Appendix 1), the FPP and other appropriate AA emergency procedures.

4.3.1. Operational Emergencies

The AAs will manage interruptions or adjustments in water management actions, which may occur due to unforeseen power system, FRM, navigation, dam safety, or other emergencies. Such emergency actions will be viewed by the AAs as a last resort and will only be used in place of operations outlined in the annual WMP if necessary. Emergency operations will be managed in accordance with TMT Emergency Protocols, the FPP and other appropriate AA emergency procedures and coordinated through TMT when practicable. The AAs will take all reasonable steps to limit the duration of any interruption in fish protection measures. Emergency Action Plans for generation and transmission emergencies are provided in the Attachments to the TMT Emergency Protocols.

4.3.2. Fish Emergencies

The AAs will manage operations for fish passage and protection at CRS facilities. The intended operation may be modified for brief periods of time due to unexpected equipment failures or other conditions. These events can result in short periods when projects are operating outside normal specifications due to unexpected or emergency events. Where there are significant biological effects of more than short duration emergencies impacting fish, the AAs will coordinate with the in-season management Regional Forum (2019 BiOp, page 38) to develop and implement appropriate adaptive management actions to address the situation. The AAs will take all reasonable steps to limit the duration of any fish emergency. The AAs will operate in accordance with the TMT Emergency Protocols identified in Appendix 1 of the WMP.

4.3.3. Emergency Operations for Non-ESA listed Fish

The AAs agree to take reasonable actions to aid non-listed fish during brief periods of time due to unexpected equipment failures or other conditions and when significant detrimental biological effects are anticipated or likely to have occurred. When there is a conflict in such operations, operations for ESA-listed fish will take priority.

4.4. Fish Research

Research studies may require special operations that differ from routine operations otherwise described in the 2019 BiOp, the 2000/2006 BiOp, and the current FPP. These studies are generally developed through technical workgroups of the Regional Forum (e.g., the Corps' Anadromous Fish Evaluation Program, Fish Facilities Design Review Work Group, and Studies

Review Work Group). Specific research operations are further described in the Corps' FPP (Appendix A) and the AAs' seasonal updates to the WMP. In most cases, operations associated with research entail relatively minor changes from routine operations and are coordinated in regional technical forums (e.g., TMT and/or FPOM). In some cases, the nature or magnitude of operational changes for research may require further coordination and review in policy forums [e.g., Hydro Coordination Senior Technical Team (HCT) or Regional Implementation and Oversight Group (RIOG)]. Generally, research planning and coordination occurs throughout the late fall and winter, with final research plans established by late winter/early spring. If extraordinary events occur, such as extreme runoff conditions (high or low) or a System emergency, planned research may be modified prior to implementation to accommodate anticipated unique circumstances and/or to reallocate resources to obtain the greatest value given the circumstances.

4.5. FRM Shifts

The AAs will look for opportunities to shift system FRM requirements from Brownlee and Dworshak to Grand Coulee periodically from January through April to provide more water for flow augmentation in the lower Snake River during the spring migration. The shift will be based upon end-of-month FRM elevations as stated in the official water supply forecasts produced early each month during this time period. Consideration of these FRM shifts by the Corps will include an analysis of impacts to FRM and will not be implemented if FRM would be compromised. These shifts may be implemented after coordination with TMT to discuss tradeoffs and impacts. The reservoirs must be back to their specific upper rule curve (URC) by April 30.

5. Decision Points and Water Supply Forecasts

5.1. Water Management Decisions and Actions

Table 2 below lists times associated with key water management decisions/actions. Some decision points, such as setting flow objectives, are in the 2019 BiOp and the 2000/2006 BiOp. Other decision points, such as setting weekly flow augmentation levels, require thorough discussion and coordination. The decision points given below are spelled out in the most current BiOps, 2018 CRSPA, or are based on best professional judgment and expertise. These decisions are made by the AAs in consideration of actions called for in the BiOps, and input received through the regional forums (TMT, RIOG, and Regional Executives).

Table 2. Water Management Decision Points/Actions.

Sept	tember	Early October	November	Winter (December–March)	Early April	Early May	June	Early July
will be comid to I from the operating of the second of the	nd Oreille drafted ate Sep e summer ng range. Stable o protect out and esident le le g 10 to 20 m full by Sep. Y Horse: lows to bull trout leer t fish argeting 10 eet from end of Sep. Shak: 1520 feet from full) of Sep, modified leent n U.S. and ce Tribe er use in orshak	Albeni Falls: draft to 2051 feet by mid-Nov unless otherwise requested. Bonneville: Assess potential tailwater elevations to support chum spawning. Storage Projects: Preliminary discussions of FRM/project refill strategy. Support for Hanford Reach fall Chinook protection operations (non-BiOp action). Libby: Consider Kootenai burbot temperature operation.	Early season WSF using SOI. Hanford Reach fall Chinook redd protection level set (non-BiOp action).	Bonneville: Determine winter/ spring chum redd protection tailwater elevation. Storage Projects: Determine FRM and refill strategies, including any available FRM shifts. Determine final April 10 objectives based on FCEs from March WSF. Hungry Horse, Columbia Falls: Min flows set by Jan, Feb, Mar WSF for Apr-Aug Determine flexibility to operate above min flow and still reach spring refill targets. Libby: Corps Dec WSF determines end of Dec FRM elevation. Grand Coulee: Use March WSF at The Dalles Apr-Sep to determine if Lake Roosevelt Inc. Storage draft is 82.5 KAF or 132.5 KAF.	Spring flow objectives set by April WSFs. Determine spring flow management strategy including priority for refill. Lower Snake Projects: Apr 3 begin MOP. John Day: Apr 10 begin MIP, 262.5-264.5 feet) through Sep 30. Storage Projects: Determine refill start date based on streamflow forecast to exceed ICF at The Dalles. Libby, Hungry Horse: If required, use April WSF to determine VARQ refill flows. Storage Projects: When not at min flows, operate to upper FRM elevation on or about April 10 (exact date determined by inseason management).	Libby: Evaluate likely tier for sturgeon volume using May WSF. Regional technical team recommends shape, timing of sturgeon pulse. Libby: minimum outflow 6 kcfs for bull trout from May 15 until sturgeon op begins. Libby: Use May WSF to calculate tiered bull trout flow for post-sturgeon flow through Aug. Storage Projects: Determine refill start date based on streamflow forecast to exceed ICF at The Dalles (if not in April). Libby/Hungry Horse: Use May WSF to determine VARQ refill flows. Libby/Hungry Horse: Use May WSF for The Dalles Apr-Aug to determine Sep draft limit.	Lower Granite: Summer flow objective determined by June WSF. Libby, Hungry Horse: Use June WSF to determine VARQ refill flows. Libby: Regional technical team recommends shape and timing of sturgeon pulse. Determine summer flow augmentation strategy (early June). Begin Dworshak temperature modeling. Dworshak: Refill by about June 30.	Grand Coulee: summer draft limit determined by July WSF for The Dalles Apr-Aug. Libby, Hungry Horse, Dworshak: Estimate stable flows that will draft for salmon. Libby: Refill probability is likely later in July (exact date determined in-season). Dworshak: Begin summer flow augmentation and temperature moderation.

5.2. Water Supply Forecasts (WSF)

Water supply forecasts (WSF) serve as a guide to how much water may be available for fish and other operations. Flow projections are provided to the TMT regularly during the fish passage season (April 3 – August 31).

The NWRFC, Corps, Reclamation, and others prepare water supply forecasts to manage the Columbia and Snake rivers, and implement actions described in the BiOps (Tables 3 and 4).

Until recently, the NWRFC produced three Ensemble Streamflow Prediction (ESP) forecasts using current conditions and historical temperature and precipitation traces from 1949 to the most recently completed year (2018) for various forecast points. The three forecasts were differentiated by the number of days of deterministic weather forecasts used to initialize the streamflow forecast. The three initializations used have been the 10, 5, and 0 days of weather forecast to produce ESP10, ESP5 and ESP0 products. The AAs had used the 50% exceedance value for the ESP5 as the Official forecast.

As of October 1, 2019, NWRFC has modified their ESP forecasts by updating the period used to force the ensembles. The new period is 1981 through the current year. The updated period is aligned with a new gridded calibration set that NWRFC is actively using to recalibrate their river models. NWRFC has also retired the 5-day weather forecast initialization from their streamflow forecasts. The ESP10 and ESP0 will still be available and a new method using the Meteorological Ensemble Forecast Processor (MEFP) This method will be labeled as ESPM (for MEFP).

In 2020, the 50% exceedance value for the 10-day initialized ESP forecast (ESP10) for The Dalles and Lower Granite, released closest to or prior to the 3rd working day of the month will be used as the official forecast for each month. FRM or other computations will continue to be computed at the same intervals as before.

Table 3. Forecast Designations.

Date	Forecast Designation
6 January 2020	January
5 February 2020	February
4 March 2020	March
3 April 2020	April
5 May 2020	May
3 June 2020	June
6 July 2020	July

Table 4. Water Supply Forecasts Used to Implement BiOp Actions. See Table 5 for project-specific operations.

Forecast Point	fic operations. Forecast period	Forecast	BiOp Actions to be Determined
	April – August Provided by Reclamation	January, February, March	Sets min. flows at Hungry Horse and Columbia Falls
Hungry Horse		January, February, March	Sets VARQ FRM targets
	May – September Provided by Reclamation	April	Sets VARQ FRM targets and VARQ refill flows
	Reclamation	May, June	Sets VARQ refill flows
	April – September Provided by NWRFC	March	Sets CRWMP adjustments at Grand Coulee
The Dalles	April – August Provided by NWRFC	April	Sets spring flow objective at McNary Dam
		May	Sets end of September draft limits at Hungry Horse and Libby
		July	Sets end of August draft limit at Grand Coulee
Lower	April – July	April	Sets spring flow objective at Lower Granite
Granite	Provided by NWRFC	June	Sets summer flow objective at Lower Granite
		December	Sets end of December variable draft target
		January, February, March	Sets VARQ FRM targets
	April – August Provided by Corps Seattle District	April	Sets VARQ FRM targets and VARQ refill flows
Libby		Мау	Sets Libby min. sturgeon flow volume and min. bull trout flows for after sturgeon pulse through Sept. Sets VARQ FRM targets and VARQ refill flows
		June	VARQ refill flows
Dworshak	April – July Provided by Corps Walla Walla District	January to June	Manage for reservoir FRM and refill

6. Project Operations

Table 5 summarizes the major fish-related reservoir and flow operations by project, consistent with the 2019 BiOp, 2000/2006 BiOp, and 2018 CRSPA. More detailed descriptions of each of these operations by project follow the table.

Table 5. Project Operations for ESA-listed Fish Species.

Project	FRM & Project Refill	Kootenai River White Sturgeon	Bull Trout	Spring Anadromous	Summer Anadromous	Chum
Libby (section 6.4)	Winter: Operate to VARQ FRM rule curve and achieve target elevation by April 10 if possible. Spring: Adhere to VARQ Operating Procedures, supply tiered volume for sturgeon and minimum flow for bull trout. Summer: Provide summer flow augmentation, refill. Exact date determined inseason dependent on available water supply, shape, and spring flow operations, while avoiding involuntary spill and meeting FRM objectives.	May-July: Provide USFWS sturgeon volume to augment flow at Bonners Ferry.	Year -Round: Maintain project minimum flow requirements. Operate using ramping rates to minimize adverse effects of flow fluctuations. May 15-Sep 30: Operate to Bull Trout minimum flow requirements. Maintain steady outflow if possible Jul-Sep while targeting draft to 10 feet from full by end of Sep (except in dry water years ⁵ when target elevation can be to 20 feet from full). Full is 2459 feet.	Operate to meet refill and support flow objectives if possible without jeopardizing FRM, meeting sturgeon volume goals and not exceeding TDG limits.	September: Target draft to 10 feet from full by end of Sep (except in dry water years when the draft target will increase to 20 feet from full). Full is 2459 feet.	Fall/winter storage may be used to support chum flows.
Hungry Horse (section 6.2)	Winter: Operate to VARQ FRM rule curves and to 75% probability of meeting April 10 elevation objective.	N/A	Year-Round: Maintain Columbia Falls and project minimum flow requirements. Operate using ramping rates to minimize adverse effects of flow fluctuations and maintain steady outflow if possible Jul–Sep. Draft during Jul-Sep to a target elevation of 3550 feet (10 feet from full) by Sep 30, except in dry water years ⁵ when the draft target is 3540 feet (20 feet from full). Full is 3560 feet.	Refill by about June 30 if possible without excessive spill and operate to help meet flow objectives without exceeding TDG limits.	September: Draft during Jul- Sep to a target elevation of 3550 feet (10 feet from full) by Sep 30, except in dry water years ⁵ when the draft target elevation is 3540 feet (20 feet from full).	

Project	FRM & Project Refill	Kootenai River White Sturgeon	Bull Trout	Spring Anadromous	Summer Anadromous	Chum
Albeni Falls (section 6.3)	Winter: Operate within standard FRM criteria. Spring: Refill by June 30. Spring: When not operating to meet minimum flows, or to minimize downstream flooding, operate to be at upper FRM elevation on or about April 10 (exact date determined in-season) to increase flows for spring flow augmentation for fish.	N/A	Fall/Winter: Winter minimum control elevation will be 2051 feet by mid-Nov. Maintain 2051 feet until stable lake elevation is no longer required to support kokanee spawning as coordinated with IDFG. After end of stable lake operation to support kokanee spawning, operate not to exceed FRM rule curve but not below minimum control elevation.			Fall/Winter: Storage may be used to support chum flows.
Grand Coulee (section 6.5)	Winter: Operate for FRM and to 85% probability of meeting April 10 elevation objective to increase spring flows in the Columbia River. Spring: Refill after the Fourth of July holiday each year (exact date to be determined during inseason management).	N/A	N/A	Operate to help support Spring flow objectives below Priest Rapids and McNary. Jan-Apr maintain 85% confidence of meeting April 10 elevation objective.	July-August: Draft to support salmon flow objectives during Jul-Aug with variable draft limit of 1278 to 1280 feet by Aug 31 based on the WSF. ² <u>August</u> : Reduce pumping into Banks Lake and allow Banks Lake to operate up to 5 feet from full (1565 feet) to help meet salmon flow objectives when needed.	Fall/Winter: Storage may be used to support chum flows.
Dworshak (section 6.8)	Winter: Operate to achieve April 10 elevation objective (exact date to be determined during inseason management). Spring: Refill by about June 30 and operate to help meet flow objectives. Grand Coulee/Dworshak shift.	N/A	N/A		Draft to 1535 feet by end of Aug and to 1520 feet (80 feet from full) by end of Sep, unless modified per the Agreement between U.S. and Nez Perce Tribe for water use in the Dworshak Reservoir.	Fall/Winter: Storage may be used to support chum flows.

² These draft limits will be modified by the *Lake Roosevelt Incremental Storage Release Project* (Section 6.5.6).

Project	FRM & Project Refill	Kootenai River White Sturgeon	Bull Trout	Spring Anadromous	Summer Anadromous	Chum
Lower Granite (section 6.10)	Pool can be drafted as low as 724 feet to protect levees during high flows.	N/A	N/A	Flow objective of 85- 100 kcfs Operate within 1.5 foot MOP range (see section 6.10.1 above).	Flow objective of 50-55 kcfs. Operate within 1.5 foot MOP range (see section 6.10.1 above).	N/A
Little Goose (section 6.10)	N/A	N/A	N/A	Operate within 1.5 foot MOP range.	Operate within 1.5 foot MOP range.	N/A
Lower Monumental (section 6.10)	N/A	N/A	N/A	Operate within 1.5 foot MOP range.	Operate within 1.5 foot MOP range.	N/A
Ice Harbor (section 6.10)	N/A	N/A	N/A	Operate within 1.5 foot MOP range.	Operate within 1.5 foot MOP range.	N/A
McNary (section 6.11)	N/A	N/A	N/A	Flow objective of 220- 260 kcfs.	Flow objective of 200 kcfs.	N/A
John Day (section 6.11)	Reservoir may be operated between 257 and 268 feet for FRM objectives	N/A	N/A	Operate within 2.0 feet of minimum level that maintains irrigation pumping.	Operate within 2.0 feet of minimum level that maintains irrigation pumping.	When storage space allows and not in conflict with FRM, operate for chum, when hydrologic conditions indicate use of John Day storage space for benefit of maintaining chum tailwater criteria.
The Dalles (section 6.11)	N/A	N/A	N/A			N/A
Bonneville (section 6.11)	N/A	N/A	N/A	Operate turbines as described in the FPP.	Operate turbines as described in the FPP.	Operate for chum when hydrologic conditions indicate system can likely maintain minimum tailwater elevation (at Oregon shore 0.9 miles downstream of PH1, 50' upstream of Tanner Creek) during spawning and incubation.

6.1. Hugh Keenleyside Dam (Arrow Canadian Project)

6.1.1. Mountain Whitefish Flows

Canada has been testing Arrow flow regimes for mountain whitefish spawning over the last several years. Desirable spawning flow levels are defined by Canada and may be modified annually. The historically desired operation is an Arrow outflow between 45-55 kcfs beginning the third week in December and continuing through mid-January. Egg protection flows are generally about 19 kcfs lower than the spawning flow from mid-January through the end of March. For 2020, Canada has indicated that the level of white fish protection will be determined by BC Hydro in consultation with Canadian regulators. The negotiation of annual agreements under the Treaty will reflect the outcome of BC Hydro discussions on flow objectives for whitefish.

6.1.2. Rainbow Trout Flows

Rainbow trout spawning typically begins in April. The Canadian objective is to provide stable or increasing river levels downstream of Arrow between April 1 and June 30. Provision of these flows is negotiated through annual agreements under the Treaty. Canada has indicated that research suggest the current operating regime has resulted in smaller, less healthy fish. The level of trout spawning protection for 2020 will be determined by BC Hydro in consultation with Canadian regulators.

6.2. Hungry Horse Dam

Hungry Horse Dam is operated for multiple purposes including fish and wildlife, FRM, power, and recreation. Specific operations for flow management to aid anadromous and resident fish are listed in the following sections.

6.2.1. Winter/Spring Operations

Hungry Horse will be operated during the winter and early spring for FRM and to achieve a 75% probability of reaching the April 10 elevation objective in order to provide more water for spring flows. This is achieved by operating between the Upper Rule Curve (URC) as an upper limit and the Variable Draft Limits (VDL) as a lower operating limit for the reservoir. The URC is the maximum elevation allowed for FRM and is calculated by using the Storage Reservation Diagram (SRD) developed for VARQ FRM. A description of VDL is provided in Section 7.4. Reclamation computes Hungry Horse Dam's April 10 elevation objective by linear interpolation between the March 31 and April 15 forecasted FRM elevations based on the Reclamation March Final for the May - September Water Supply Forecast (WSF).

Refill at Hungry Horse usually begins approximately ten days prior to when streamflow forecasts of unregulated flow is projected to exceed the Initial Control Flow (ICF) at The Dalles, Oregon. During refill, discharges from Hungry Horse are determined using inflow volume forecasts, streamflow forecasts, weather forecasts, and the VARQ Operating Procedures. Other factors such as local FRM are also considered when determining refill operations. During the latter part

of the FRM season (April) and the refill season (typically May through June), Hungry Horse discharges may be reduced for local flood protection in the Flathead Valley. In 2014 the official flood stage for the Flathead River at Columbia Falls, Montana was modified to 13 feet (approximate flow 44000 cubic feet per second (cfs)) when Flathead Lake elevation is in the top 1 foot (2892-2893 feet). The flood stage is 14 feet (approximately 51000 cfs) when Flathead Lake's elevation is more than 1 foot below full (2892 feet or lower). These criteria were developed to minimize flooding on the Flathead River above Flathead Lake. With these criteria, Reclamation will adjust outflows from Hungry Horse Dam as necessary (down to a minimum discharge of 300 cfs) as long as there is enough space in the reservoir to manage the remaining runoff. Hungry Horse generally starts reducing discharges when the stage at Columbia Falls hits and begins to exceed 12.5 feet when the flood stage criteria is 13 feet, and 13 feet when the flood stage criteria is 14 feet. However, depending on remaining runoff volume and available reservoir space, Hungry Horse may not start reducing discharges until Columbia Falls reaches levels higher than these criteria.

Often during the spring, changes in FRM, transmission limitations and generation unit availability will require adaptive management actions for real-time operations in order to control refill and to avoid spill.

6.2.2. Selective Withdrawal System Maintenance

Maintenance of Hungry Horses Selective Withdrawal System (SWS) has not happened in the last 3 years and needs to be performed in 2020. The maintenance would require Hungry Horse to be at elevation 3525 ft the first part of April for 2 to 3 weeks, regardless of the required FRM elevation for that year. The SWS is used to control the temperature of the releases in the summer that are critical to the fishery below Hungry Horse.

More information and coordination on the drawdown will occur in-season.

6.2.3. Summer Operations

Hungry Horse will operate to refill by about June 30 to provide summer flow augmentation, except as specifically provided by the TMT. However, the timing and shape of the spring runoff may result in reservoir refill before or after the June 30. For example, a late snowmelt runoff may delay refill to sometime after June 30 in order to avoid excessive spill.

During the summer, Hungry Horse is drafted within the 2019 BiOp specified draft limits. The flow levels are set to meet the end of September target elevation based on the best information available and are coordinated with TMT. A number of factors are considered in setting the flows including the status of fish migration, attainment of flow objectives, water quality, and the effects that reservoir operations will have on other listed and resident fish populations. Hungry Horse discharges during the summer months should be even or gradually declining in order to minimize a double peak on the Flathead River.

The summer operation will target the reservoir elevation of 3550 feet (10 feet from full) by September 30, except in dry water years³ when the draft will increase to target an elevation of 3540 feet (20 feet from full). However, if the project fails to refill, especially during drought years, minimum flow requirements (see Section 6.2.5) may draft the reservoir below the end of September target elevation.

Operations in September are primarily focused on benefiting listed resident bull trout and other fish species below the project. The intent is to maintain steady or gradually declining flows below the project. Hungry Horse may draft slightly above or below the end of September draft limit depending on inflows and minimum flow requirements. Hungry Horse may end the month at an elevation above the end of September draft limit if inflows are higher than were forecasted in the planned operation. Hungry Horse may end the month at an elevation below the end of September draft limit due to minimum flow requirements and if inflows are lower than were forecasted in the planned operation.

6.2.4. Reporting

Reclamation will fulfill the 2000 USFWS BiOp Reasonable and Prudent Measure (RPM) for annual and monthly reporting by contributing to the annual WMP and presenting weekly and/or biweekly reports of Hungry Horse operations through the TMT meeting process. Reclamation will also fulfill the USFWS RPM recommendation for reporting actual operations by making available pertinent historic elevations and flows as related to Hungry Horse Dam that are available on the following website.

http://www.usbr.gov/pn/hydromet/esatea.html.

6.2.5. Minimum Flows and Ramp Rates

The following minimum flows and ramp rates help guide project operations to meet various purposes, including power production. Minimum flows and ramp rates were identified in the 2000 USFWS BiOp for Hungry Horse Dam to protect resident fish and their food organisms in the Flathead River.

There are two minimum flow requirements for Hungry Horse Dam. One is for the South Fork of the Flathead River below the project, the second is for Columbia Falls on the mainstem Flathead River located just downstream from the confluence of the South Fork with the mainstem. The minimum flows for both sites are determined monthly based on the Reclamation WSF for the inflows to Hungry Horse for the period April 1 through August 31. These minimum flows are determined monthly starting with the January forecast, and then set for the remainder of the year based on the March final runoff forecast. Table 6 shows how the minimum flows are calculated⁴. The minimum flow requirements generally govern Hungry Horse discharges in the

³ "Dry water years" are defined in the 2018 CRSPA as the lowest 20th percentile of water years in the RFC 30-year period of record (currently 1981-2010) using the May final water supply forecast for The Dalles April-August. Currently, a dry water year is less than 72.5 MAF. See Section 9 below for more information.

⁴ 2000 USFWS BiOp, Section 3.A.1, Page 6.

fall unless the static FRM levels require discharges greater than the minimum flow to maintain the required space in the reservoir through the end of December.

Table 6. Minimum Flows at Hungry Horse and Columbia Falls.

	Tuble of Milliam I lows at Hungry Horse and Columbia I ans.					
	Hungry Horse Apr-Aug inflow forecast	Hungry Horse min flow ^a	Columbia Falls min flow			
	(KAF)	(CFS)	(CFS)			
İ	< 1190	400	3200			
Ī	1190 - 1790	Interpolate between 400-900	Interpolate between 3200-3500			
	> 1790	900	3500			

a. To prevent or minimize flooding on the Flathead River above Flathead Lake, Hungry Horse discharges can be reduced to a minimum flow of 300 cfs when the stage at Columbia Falls exceeds 13 feet.

The maximum ramp up and ramp down rates are detailed in Table 7. The daily and hourly ramping rates may be exceeded during flood emergencies to protect health and public safety and in association with power or transmission emergencies. The ramp rates will be followed except when they would cause a unit(s) to operate in a zone that could result in premature wear or failure of the units. In this case the project will utilize a ramp rate which allows all units to operate outside the rough zone. The AAs will provide additional information to the USFWS describing operations outside the "rough zone."

Table 7. Hungry Horse Dam Ramping Rates.

Daily and Hourly Maximum Ramp Up Rates for Hungry Horse Dam					
(as measured by daily flows, not daily averages, restricted by hourly rates) Flow Range Ramp Up Unit Limit Ramp Up Unit Limit					
					(measured at Columbia Falls)
3200 - 6000 cfs	1800 cfs/day	1000 cfs/hour			
>6000 - 8000 cfs	1800 cfs/day	1000 cfs/hour			
>8000 - 10000 cfs	3600 cfs/day	1800 cfs/hour			
>10000 cfs	No limit	1800 cfs/hour			

Daily and Hourly Maximum Ramp Down Rates for Hungry Horse Dam (as measured by daily flows, not daily averages, restricted by hourly rates)			
Flow Range (measured at Columbia Falls)	Ramp Down Unit Limit (daily max)	Ramp Down Unit Limit (hourly max)	
3200 - 6000 cfs	600 cfs/day	600 cfs/hour	
>6000 - 8000 cfs	1000 cfs/day	600 cfs/hour	
>8000 - 12000 cfs	2000 cfs/day	1000 cfs/hour	
>12000 cfs	5000 cfs/day	1800 cfs/hour	

6.2.6. Spill Operations

Hungry Horse will be operated to avoid spill if practicable. Spill at Hungry Horse is defined as any release through the dam that does not pass through the power plant. Full capacity of the power plant is around 408 MW (~12,000 cfs) at full pool, however current transmission restrictions limit generation to 310 MW (~9,000 cfs). Large amounts of spill can cause TDG levels in the South Fork of the Flathead River to exceed the state of Montana's standard of 110%. Empirical data and estimates show that limiting spill to a maximum of 15% of total outflow will help to avoid exceeding the Montana State TDG standard of 110%.

6.3. Albeni Falls Dam

6.3.1. Albeni Falls Dam Fall and Winter Operations

The Corps received a letter from the USFWS dated October 21, 2013, regarding the 2013-2014 Minimum Control Elevation (MCE) for Lake Pend Oreille, Idaho (FWS Ref: 01EIFW00-2014-TA-0005 (COMM-110)). The letter indicated the USFWS would not be providing a System Operations Request (SOR) for the 2013-2014 MCE due to IDFG's re-evaluation of kokanee egg-to-fry survival data. Subsequent to this letter IDFG concluded survival data do not exist at this time to justify a USFWS request for a specific MCE and accordingly the USFWS deferred to the AAs for determining the MCE.

For the winter of 2020 Albeni Falls planned target is an MCE of 2051 feet. The lake will stay within a half-foot of the MCE during kokanee spawning continuing until February 15 for habitat restoration work being conducted by IDFG. If low elevation habitat work is done early, then Albeni Falls may be operated to begin implementation of the Flexible Winter Power Operation (FWPO) if requested by BPA as early as after spawning is declared over or December 31, whichever occurs first. Lake Pend Oreille may be fluctuated under FWPO from the MCE to elevation 2056 feet.

6.3.2. Coordination

The Action Agencies will continue to coordinate with the Region on Albeni Falls operations.

6.3.3. FRM Draft

Albeni Falls Dam will be operated during the winter season using standard FRM criteria.

6.3.4. Refill Operations

During the spring, Albeni Falls Dam will be operated to fill Lake Pend Oreille in accordance with standard FRM criteria.

6.3.5. Summer Operations

During the summer, Albeni Falls Dam will be operated to maintain Lake Pend Oreille elevation at Hope, Idaho, between elevation 2062.0 and 2062.5 feet. The Lake will be held above elevation 2062.0 feet through the third Sunday in September, or September 18, whichever date is later. The Corps will try to be above 2061.0 feet through the fourth Sunday in September, or September 25 whichever is later. The latter elevations may change in the event of biological and/or operational needs of the coordinated system. Starting on October 1, the Lake will begin the draft to elevation 2051.0 feet by mid-November.

6.4. Libby Dam

Libby Dam flows will be regulated consistent with existing treaties, Libby Project authorization for public safety, and other laws to achieve water volumes, water velocities, water depths, and water temperature at a time to maximize the probability of allowing significant sturgeon

recruitment and to provide a year-round thermograph that approximates normative conditions, while also meeting flood damage reduction objectives. The year-round project minimum outflow is 4.0 kcfs.

6.4.1. Coordination

The AAs will continue to coordinate Libby Dam BiOp operations at TMT.

6.4.2. Burbot

Providing low temperatures, if possible, from Libby Dam to aid upstream migration of burbot to spawning areas in the Kootenai River in Idaho will occur each winter. These low temperatures may be called for over an extended period from October through February. Specific details of this operation for the current year will be developed and will be included in the fall/winter update. An interagency Memorandum of Agreement for this species was completed in June 2005. Use of VARQ FRM procedure and implementation of the variable end-of-December FRM target elevation may aid this operation in years with below average runoff forecasts.

6.4.3. Ramp Rates and Daily Shaping

The purpose of the following actions is to provide better conditions for resident fish by limiting the flow fluctuations and setting minimum flow levels. In addition, ramping rates protect varial zone productivity by emulating a normative hydrograph. These ramp rates for Libby Dam were proposed in the BA supplement to minimize impacts to bull trout and are included in the 2006 USFWS BiOp. The following ramp rates (Table 8) will guide project operations to meet various purposes, including power production.

Daily and hourly ramping rates may be exceeded during flood emergencies to protect health and public safety and in association with power or transmission emergencies. Variances to these ramping rates during years when water supply forecasting errors overestimate actual runoff, or variances are necessary to provide augmentation water for other listed species or other purposes, will be coordinated through the TMT process. This is expected only in dry water years³. At the project, the ramp rates will be followed except when they would cause a unit(s) to operate in the rough zone, a zone of chaotic flow in which all parts of a unit are subject to increased vibration and cavitation that could result in premature wear or failure of the units. In this case, the project will utilize a ramp rate which allows all units to operate outside the rough zone.

Table 8. Prescribed Libby Dam maximum ramp rates to protect resident fish and prey organisms in the Kootenai River in addition to minimizing levee erosion along the river. Rate of change may be less than stated limits.

		<u>Summer</u> (05/01 - 09/31)	
		Hourly	Daily
	4-6 kcfs	2500 cfs	1 unit
Ramp Up	6-9 kcfs	2500 cfs	1 unit
капр Ср	9-16 kcfs	2500 cfs	2 units
	16-QPHC	5000 cfs	2 units
	4-6 kcfs	500 cfs	500 cfs
Ramp Down	6-9 kcfs	500 cfs	1000 cfs
Kamp Down	9-16 kcfs	1000 cfs	2000 cfs
	16-QPHC	3500 cfs	1 unit
		Winter (10/01 - 04/30)	
		Hourly	Daily
	4-6 kcfs	2000 cfs	1 unit
Ramp Up	6-9 kcfs	2000 cfs	1 unit
	9-16 kcfs	3500 cfs	2 units
	16-QPHC	7000 cfs	2 units
	4-6 kcfs	500 cfs	1000 cfs
Ramp Down	6-9 kcfs	500 cfs	2500 cfs
	9-16 kcfs	1000 cfs	1 unit
	16-QPHC	3500 cfs	1 unit

(2006 USFWS BiOp at Description of the proposed action, page 7, Table 1.)

6.4.4. FRM

The Corps will continue to use its forecast procedure in December to determine the December 31 FRM elevation. In water years where the December forecast for the period April through August is less than 5900 KAF based on the Corps' forecast procedures, the end-of-December draft elevation will be higher than 2411 feet. If the December forecast for April-August is 5500 KAF or less, the end-of-December target elevation would be 2426.7 feet. The end-of-December elevation is a sliding scale between elevation 2426.7 feet and 2411 feet when the forecast is between 5500 and 5900 KAF.

Libby Dam will be operated during January through March (into April if the start of refill has not been declared) to the VARQ FRM storage reservation diagram (SRD). During the refill period from about April through June, Libby Dam will release flow in accordance with VARQ FRM Operating Procedures at Libby Dam. Refill at Libby Dam will begin 10 days prior to when the forecasted unregulated flow at The Dalles is expected to exceed the ICF. Once refill begins, Libby Dam outflow will be no lower than the computed VARQ flow (or inflow, if that is lower than the VARQ flow), unless otherwise allowed by the VARQ Operating Procedures. For

example, changes to reduce the VARQ flow can occur to protect human life and safety, during the final stages of refill, or through a deviation request.

The VARQ flow will be recalculated with each new Corps water supply forecast and outflows will be adjusted accordingly. If the VARQ operating procedures require discharges above powerhouse capacity, spill from Libby Dam may occur. The intent is to adjust Libby Dam discharge to maximize reservoir refill probability and minimize the potential for spill.

6.4.5. Spring Operations

The purpose of the following actions are to refill Libby Dam in order to provide the flow for Kootenai River white sturgeon, bull trout minimum flows, and anadromous fish flow augmentation water. Libby Dam will provide flows for sturgeon, bull trout, and salmon during spring; for salmon and bull trout during summer and for bull trout and resident fish in September while attempting to minimize a double peak or large flow fluctuations in the June–September period. The AAs will operate Libby Dam to provide for summer flow augmentation, exact refill date to be determined in-season by available water supply and shape and spring flow operations, while also avoiding involuntary spill and meeting FRM objectives. During the spring, the AAs will operate Libby Dam to meet its flow and refill objectives. If both of these objectives cannot be achieved, VARQ and sturgeon flow operations are a higher priority over summer refill.

When not operating to minimum flows, the project will be operated to achieve a 75% chance of the upper FRM rule curve on or about April 10 (the exact date to be determined during in-season management) to increase flows for spring flow management.

6.4.6. Bull Trout Flows

From May 15 to June 30 and during the month of September, a minimum flow of 6000 cfs will be discharged and minimum flows of 4000 cfs will be provided for the rest of the year. Volume to sustain the basal flow of 6000 cfs from May 15 through May 31 will be accounted for with sturgeon volumes, and in the fall should be drawn from the autumn FRM draft. Table 9 shows how the bull trout minimum flow is determined during this period.

Table 9. Minimum bull trout releases from Libby Dam July 1–August 31, based on May final Libby water supply forecast for April-August period (May 15–June 30 and all of September minimum is 6 kcfs).

Libby Forecast Runoff Volume (MAF*)	Minimum bull trout flows between sturgeon and salmon flows (kcfs)
0.00 < forecast < 4.80	6 kcfs
4.80 < forecast < 6.00	7 kcfs
6.00 < forecast < 6.70	8 kcfs
6.70 < forecast < 8.10	9 kcfs
8.10 < forecast < 8.90	9 kcfs
8.90 < forecast	9 kcfs

^{*}MAF = million acre-feet

6.4.7. Sturgeon Operation

The purpose of the actions below is to provide water for sturgeon spawning and egg incubation. Libby Dam will provide the tiered volume for sturgeon flows as described in the 2006 USFWS BiOp, the Clarified RPA from USFWS and as summarized in Figure 1. The outflow during sturgeon augmentation period will be equal to or greater than the VARQ flow. The release operation will be developed prior to commencement of the sturgeon tiered flow release. Water temperature profiles will be monitored near the dam starting in April and continue through July to provide information necessary for timing of sturgeon spawning/rearing flow augmentation. Also, water temperature profiles in the forebay are used to determine when warmer temperatures may be provided to assist sturgeon spawning. Reservoir temperature data collection is occurring and is intended to allow better planning for temperature management of water releases.

This sturgeon water will be in addition to needs for listed bull trout and salmon, and will be measured above the 4000 cfs minimum releases from Libby Dam. Accounting for these tiered volumes will begin when the regional team of biologists determine that benefits to conservation of sturgeon are most likely to occur. Sturgeon volume accounting will also occur when additional flow above FRM flow is needed to sustain a base flow of 6,000 cfs from May 15 to May 31 (minimum bull trout flow), regardless of sturgeon augmentation commencement. Sturgeon flows will generally be initiated between mid-May and the end of June to augment lower basin runoff entering the Kootenai River below Libby Dam, consistent with the current version of the Kootenai River Ecosystem Function Restoration Flow Plan Implementation Protocol and 2006 USFWS BiOp and applicable clarifications.

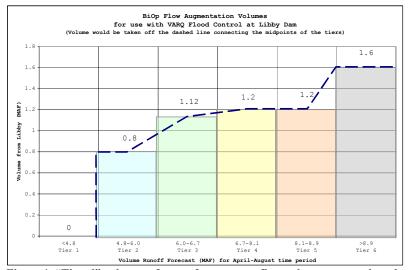


Figure 1. "Tiered" volumes of water for sturgeon flow enhancement to be released from Libby Dam according to the Libby May final forecast of April—August volume. Actual flow releases would be shaped according to seasonal requests from the USFWS and inseason management of water actually available.

6.4.8. Post-Sturgeon Operation

After the sturgeon operation, flows will be planned to be stable or slowly declining over the summer and to achieve refill, if possible, in July or early August, while trying to minimize a double peak in outflows. Summer operations will be coordinated through TMT in-season management. Libby Dam releases will follow ramp rates listed in the 2006 USFWS BiOp and shown on Table 8.

6.4.9. Summer Operations

During the summer, the AAs draft Libby Dam within the 2019 BiOp and 2000/2006 BiOps' specified draft limits based on flow recommendations coordinated at TMT. The AAs consider a number of factors when developing flow recommendations for TMT to review, such as: the impact of flow fluctuations on bull trout and other resident fish below the project, the status of juvenile salmon outmigration in the lower Columbia, attainment of flow objectives, water quality, and the effects that reservoir operations will have on other listed and resident fish populations.

During the months of July through September, the AAs will operate Libby Dam to augment flows for juvenile salmon out-migration in the Columbia River and to help meet local resident fish needs. In the summer, the AAs will operate to target the reservoir elevation of 2449 feet (10 feet from full) by the end of September, except in dry water years⁵ when the draft will increase to target an elevation of 2439 feet (20 feet from full). However, if the project fails to refill to above these target elevations, then the project will be operated during the summer months to release inflows or to meet minimum flow requirements and minimum bull trout flows.

Arrangements for retention of July-September water in Lake Koocanusa are possible through a Libby-Canadian storage water exchange under the current Libby Coordination Agreement, which was signed February 16, 2000. However, this operation cannot be guaranteed in any given year because it must be mutually beneficial to the Canadian Entity and the U.S. Entity. Information needed for such a determination such as the volume of the water year, is not available until well into the migration season. This operation, if any, for a given water year is generally not finalized until June or July of that year. The Coordination Agreement reduces the draft of Lake Koocanusa and provides an equivalent amount of water from Canada.

The Corps will use the best available forecast at the end of each month for July and August to set an outflow that will gradually draft Libby to the target elevation by the end of September as defined in the 2018 CRSPA (page 43). The objective of this operation is to maintain a stable or gradually declining outflow for the period from July through September. If this calculated flow is greater than the bull trout minimum, then the discharge will be maintained until updated at the end of each month.

The following limits to flow fluctuation during summer and fall at Libby Dam shall be implemented after the tiered flow volume for Kootenai River white sturgeon has been released, and releases for salmon flow augmentation are ramping down through September:

• Outflows at or below 9kcfs

- o Maintain existing instream flow requirement for bull trout. Minimize fluctuation.
- Flows between 9kcfs and 16kcfs
 - Maximum increase of 2,000 cfs (corresponds to daily maximum ramp down rate for this period).
- Flows between 16kcfs and Power House Capacity
 - Maximum increase of 5,000 cfs or one unit (corresponds to daily maximum ramp down rate for this period)
- Maximum of one allowable increase within the above flow bands after the sturgeon volume has been expended and through September 30th.

6.5. Grand Coulee Dam

Grand Coulee Dam is operated for multiple purposes including fish and wildlife, FRM, irrigation, hydropower generation, and recreation. Specific operations for flow management to aid anadromous and resident fish are listed in the following sections.

6.5.1. Winter/Spring Operations

Grand Coulee will be operated for FRM from January through April using the NWRFC's forecast for unregulated runoff at The Dalles (adjusted for available storage capacity upstream of The Dalles other than at Grand Coulee Dam) and Grand Coulee's FRM SRD. Grand Coulee is also operated during this period to support chum operations (described in detail in Section 7.3) and to maintain an 85% probability of reaching the April 10 elevation objective in order to provide more water for spring flows.

Maintaining an 85% probability of reaching the April 10 elevation objective is achieved by operating between the URC as an upper elevation limit and the VDL as a lower elevation limit for the reservoir from January through March. A description of VDL is provided in Section 7.4.

Reclamation computes Grand Coulee Dam's April 10 elevation objective by linear interpolation between the March 31 and April 15 forecasted FRM elevations based on the NWRFC March Final April-August WSF at The Dalles. The March forecast is chosen for the calculation of the April 10 elevation objective in order to allow enough time to react and to plan Grand Coulee operations accordingly. The April final forecast is typically released on the 3rd working day of the month, after which the Corps calculates FRM elevations. This usually means that final April 15 and April 30 FRM elevations are released around the 5th working day of April at the earliest. It is notable that even modest changes in The Dalles water supply forecast can produce significant changes in the forecasted FRM elevations for Grand Coulee. In order to achieve final April FRM targets, actual Grand Coulee elevations on April 10 may be below or above the April 10 objective depending on draft rates and water supply conditions.

The most likely situation that would require Grand Coulee to draft below the April 10 elevation objective is an increase in the WSF between March and April. Large increases in the WSF forecast can require large reservoir drafts in order to achieve the April 30 FRM elevation. In this situation, drafting below the April 10 elevation objective may be desirable in order to avoid exceeding draft rates and to avoid spilling through the outlet tubes. Even minimal spill though the outlet tubes can create elevated TDG levels below Grand Coulee Dam. This situation most

recently occurred in 2012, when Grand Coulee began pre-drafting in late March as a result of an increasing WSF and anticipated excessive draft rates during April. The operation was discussed and coordinated with the TMT and resulted in an adaptive management operation that minimized spill and avoided potential high TDG production by pre-drafting.

An additional factor that needs to be considered during spring operations is the on-going Third Power Plant (TPP) overhaul at Grand Coulee. The TPP overhaul will result in one TPP unit being out of service at any given time during the overhaul period. This is in addition to other units being out of service for routine scheduled maintenance. A TPP unit has a hydraulic capacity of 25 kcfs – 35 kcfs depending on unit and head. Every effort is made to schedule annual and other routine maintenance outside of the "normal" spring FRM/refill period when possible but heavy runoff years, early or delayed runoff timing, and/or unscheduled maintenance in conjunction with the TPP overhaul will increase the probability of spill and excessive TDG production. Adaptive management operations at Grand Coulee may need to be considered during the TPP overhaul period in order to minimize spill and TDG production. The TPP overhaul is currently scheduled to be completed in 2024. Grand Coulee operations will be discussed and coordinated with the TMT.

Opportunities to shift system FRM requirements from Brownlee to Grand Coulee will also be considered. The deepest reservoir draft typically occurs around April 30. Refill at Grand Coulee normally begins approximately one day prior to when streamflow forecasts of unregulated flow is projected to exceed the ICF at The Dalles Dam.

During the spring, the AAs will operate the CRS to help meet the flow objectives, to meet system FRM requirements and to refill the projects. If all of the objectives cannot be achieved, the TMT will make an in-season recommendation, weighing considerations unique to each particular year and project. System FRM requirements during refill, especially during above average years, may result in significant spill below Grand Coulee Dam to control refill, meet downstream FRM flow objectives, and limit downstream flooding. High levels of spill below Grand Coulee result in high TDG levels. A more detailed discussion of spill operations is discussed in Section 6.5.9.

6.5.2. Summer Operations

Grand Coulee will operate to refill after the Fourth of July holiday each year to provide summer flow augmentation, except as specifically provided by the TMT. Grand Coulee will be operated during the summer (July and August) to help meet the flow objectives for juvenile salmon outmigration. Grand Coulee will draft to support salmon flow objectives during July-August with variable draft limit of 1278 to 1280 feet by August 31 based on the water supply forecast. If the July Final April through August forecast for The Dalles is equal to or greater than 92 MAF then Lake Roosevelt's draft limit will be 1280 feet. If the forecast is less than 92 MAF, the draft limit will be 1278 feet. These draft limits will be modified to implement the Lake Roosevelt Incremental Storage Release Project (see Section 6.5.6).

6.5.3. Banks Lake Summer Operation

Banks Lake will be allowed to draft to elevation 1565 feet by the end of August to provide more water for summer flow augmentation. Pumping to Banks Lake will be reduced and irrigation for the Columbia Basin Project will be met by drafting the reservoir up to 5 feet from full (elevation 1570 feet) by the end of August.

6.5.4. Project Maintenance

The drum gates are an extremely important dam safety feature and must be maintained. Drum gate maintenance is planned to occur annually during March, April, and May. The reservoir must be at or below elevation 1255 feet for 8 weeks in order to complete drum gate maintenance. At a minimum, drum gate maintenance must be completed at least one time in a 3-year period, two times in a 5-year period, and three times in a 7-year period. The in-season criteria for accomplishing drum gate maintenance will be based on the FRM requirement for the April 30 maximum Grand Coulee elevation as determined by the February final April-August water supply forecast. The February forecast is used to allow sufficient time to draft the reservoir below 1255 feet by March 15. These criteria are summarized in Table 10 and described in greater detail below.

If the February forecast sets the Grand Coulee April 30 FRM elevation at or below 1255 feet, Grand Coulee will be drafted to perform drum gate maintenance. When the February forecast sets the April 30 FRM requirement above 1265 feet, drum gate maintenance will be "forced" only if needed to meet the requirements of the 1 in 3, 2 in 5, and 3 in 7 criteria. If the April 30 FRM requirement is between 1255 and 1265 feet, then maintenance will only be done if the following year would be a "forced" drum gate maintenance year. For example, if maintenance is deferred in year "one" due to dry conditions and the forecasted FRM elevation is between 1255 feet and 1265 feet in year "two", then drum gate maintenance would be accomplished in year "two" in order to avoid "forced" drum gate maintenance in year "three" regardless of water supply conditions. The example above illustrates the 1 in 3 criteria but the 2 in 5 and 3 in 7 criteria would also need to be checked.

Drum gate maintenance was completed in the spring of 2015, 2016, 2017, and 2018. Therefore, based on the 1 in 3, 2 in 5, and 3 in 7 criteria, drum gate maintenance will only be performed in 2018 if the Grand Coulee April 30 FRM requirement based on the February final water supply forecast is at or below 1255 feet.

In addition to the annual Drum Gate Maintenance, an inspection and maintenance activity is planned for the 57" Butterfly Drum Gate Intake Valves. Some inspection and maintenance on these valves can occur regardless of water levels, but some maintenance requires water levels at or below 1219 feet. The external inspection and maintenance that requires water levels at or below 1219 feet, for a week duration, must occur once every ten years. This inspection takes advantage of spring drafts for FRM, but in some years may require an additional draft below FRM requirements to conduct this maintenance. This could result in additional outflow, a longer duration of ferry outage, and elevated spill and TDG. The decision to inspect the valves will be an in-season decision depending on if the project is required to draft to elevation 1,222 feet, if

refill is not triggered to be refilled in the next few weeks, and if the project can reasonably draft without violating TDG requirements.

Table 10. Grand Coulee Dam Criteria for Drum Gate Maintenance.

February FRM Requirement for Maximum April 30 GCL Elevation (feet) 1	Drum Gate Maintenance ²
≤ 1255 feet	YES
1255 – 1265 feet	If following year would be a "forced" drum gate maintenance year: Yes If following year would not be a "forced" drum gate maintenance year: No
> 1265 feet	If in "forced" drum gate maintenance year: Yes If not in "forced" drum gate maintenance year: No

Maximum April 30 GCL Elevation based on the February official April-August water supply forecast for The Dalles using the 5-day QPF median values published by the NWRFC on February 5, 2019 adjusted for available storage capacity upstream of The Dalles other than Grand Coulee Dam. Monthly FRM requirements are available online at: http://www.nwd-wc.usace.army.mil/report/flood risk/

6.5.5. Fall Refill

From September through December, attempt to maximize water retention times and protect kokanee access and spawning. Federal action agencies, fish and wildlife agencies and tribes, and others should consult within the in-season management process to determine how to provide the biological benefits above while meeting biological opinion requirements, including chum flows, and operating to protect flows for the Hanford Reach.

6.5.6. Lake Roosevelt Incremental Storage Release Project

The Lake Roosevelt Incremental Storage Release Project is a component of the Columbia River Water Management Program (CRWMP) and is intended to improve municipal and industrial water supply, provide water to replace some ground water use in the Odessa Subarea, enhance stream flows in the Columbia River to benefit fish, and to provide water to interruptible water right holders in drought years. A Memorandum of Understanding (MOU) regarding the Lake Roosevelt Incremental Storage Release Project was signed by the State of Washington, Reclamation, and the Columbia Basin Irrigation Districts in December 2004. In December 2007, Water Resource Management Agreements in support of the incremental storage releases from Lake Roosevelt were signed by the State of Washington, the Confederated Tribes of the Colville Reservation, and the Spokane Tribe of Indians.

The Lake Roosevelt Incremental Storage Release Project will not reduce flows during the salmon flow objective period (April - August). This project provides that Lake Roosevelt will be drafted by an additional 1.0 foot in non-drought years and by about 1.8 feet in drought years by the end of August. A third of this water will go to in-stream flows. A more detailed description of this item is provided in Section 7.5 and in the FCRPS BA (Appendix B.2.1, pages 5-9).

^{2.} Drum Gate Maintenance is required to meet the 1 in 3, 2 in 5, and 3 in 7 criteria

6.5.7. Chum Flows

Grand Coulee may be used to help meet tailwater elevations below Bonneville Dam to support chum spawning and incubation. The chum operation is described in more detail in Section 7.3.

6.5.8. Priest Rapids Flow Objective

Grand Coulee will be operated to help meet the flow objective at Priest Rapids Dam as coordinated with the TMT (see Section 6.7 for objectives).

6.5.9. Spill Operations

Forced spill at Grand Coulee, as the result of system FRM requirements, may result in high levels of TDG below Grand Coulee Dam. There will be times that Grand Coulee has to spill any required discharge that is in excess of power plant capacity to control refill, meet downstream FRM flow objectives, and to limit downstream flooding. If Lake Roosevelt is above elevation 1265.5 feet, Grand Coulee can spill water over the drum gates. However, if Lake Roosevelt is below elevation 1265.5 feet, then all spill must be through the outlet tubes which can result in high levels of TDG below the project. Another factor that can cause elevated TDG levels downstream of the dam include elevated TDG levels in the forebay resulting from high TDG levels coming into Lake Roosevelt from Canada. High TDG levels resulting from outlet tube spill and/or from high forebay TDG generally affects the river reach between Grand Coulee and Chief Joseph dams and beyond. The spillway flow deflectors at Chief Joseph Dam are very efficient at stripping TDG and reducing TDG traveling further downstream when operating. During forced spill events, Grand Coulee will be operated to minimize TDG production to the extent practicable. Involuntary spill at Grand Coulee Dam will be managed in coordination with Chief Joseph Dam operations.

6.6. Chief Joseph Dam

Chief Joseph will spill according to the spill priority list and TDG production estimates to assist in systemwide TDG management.

6.7. Priest Rapids Dam

6.7.1. Spring Operations

The spring flow objective at Priest Rapids Dam is 135 kcfs from April 10 to June 30.

6.7.2. Hanford Reach Protection Flows

Grant County PUD manages the discharge from Priest Rapids Dam at the following intervals during the year to provide protection for the spawning, incubation and rearing of fall Chinook salmon.

 October-November, reverse loading (low flows during daylight hours, spill excess at night) to reduce the formation of redds at high river elevations on Vernita Bar

- November-May, maintain "Critical Elevation" in the Hanford Reach (minimum flow restriction to prevent dewatering of redds)
- March-June, reduce daily flow fluctuations to decrease mortality to juvenile fall Chinook from stranding and entrapment

6.8. Dworshak Dam

6.8.1. Spring Operations

The spring flow operation is to maintain a 95% probability of refilling Dworshak while also maximizing the releases of stored water from Dworshak reservoir in order to maximize the chance of meeting the lower Snake River spring flow objective and aid out-migrating salmon and steelhead. During the spring, the AAs will operate Dworshak Dam to improve the probability of meeting the flow and refill objectives, refilling by about June 30. The reservoir is deemed to be "full" at elevations of 1599 feet or above. If both these objectives cannot be achieved, the TMT will make an in-season recommendation, weighing considerations unique to each particular year. Opportunities to shift system FRM requirements from Dworshak to Grand Coulee will be considered periodically from January through April. Shift of system space will not occur in high water years (with a Dworshak water supply forecast greater than 2.9 MAF April to July runoff).

The Corps will release up to 7 kcfs from Dworshak, if necessary, in order to move juvenile fish into the mainstem Clearwater River during the spring hatchery releases. This operation is not related to the FCRPS BiOps.

6.8.2. Summer Operations

Summer flow augmentation is provided from Dworshak to increase listed fish survival by moderating river temperatures (improved water quality), and increasing flows in the lower Snake River

The summer temperature moderation and flow augmentation releases from Dworshak will be shaped with the intent to maintain water temperatures at the Lower Granite tailrace fixed monitoring site at or below 68°F. The Corps maintains and operates a water quality analysis model (CE-QUAL-W2), which is used in-season to forecast downstream water temperatures and inform Dworshak release decisions. The model extends from Dworshak (Clearwater River) and Hells Canyon (Snake River) dams downstream through Ice Harbor Dam. Dworshak releases generally are sufficient to provide effective water temperature management in the Lower Granite tailrace but these efforts can be overwhelmed by extremely hot weather, high discharges of warm water from Hells Canyon Dam, or high wind events that disrupt (due to mixing) the thermal stratification in the Lower Granite reservoir.

During the summer (July and August) the AAs will operate Dworshak to help meet flow/temperature objectives in coordination with the TMT. The AAs plan to draft to elevation 1535 feet by the end of August and elevation 1520 feet (80 feet from full) by the end of September unless modified per the Agreement between the U.S. and the Nez Perce Tribe (Dworshak Board Operational Plan) for water use in the Dworshak Reservoir. The extension of

the draft limit into September assures that water will be released consistent with the Nez Perce Tribe (NPT) Agreement. Releases under the NPT Agreement will be determined in the annual plan prepared by the Corps, NOAA Fisheries, Nez Perce, Idaho, and BPA and presented to the TMT for implementation.

6.8.3. Fall/Winter Operations

After summer fish operations are completed (including the NPT Agreement operations in September), flows from Dworshak will be limited to minimum discharge (one small turbine operating above the cavitation zone and within 110% TDG, approximately 1600 cfs) unless higher flows are required for FRM, emergencies, or other project uses. The purpose of these actions is to manage the filling of Dworshak reservoir while operating the project for multiple uses. Flows from Dworshak also may be maintained above minimum flow if Corps analysis determines there is flexibility to release a volume of water above minimum flow and still maintain a high reliability of meeting spring refill objectives. Opportunities to shift system FRM requirements from Dworshak to Grand Coulee will be considered periodically from January through April.

6.8.4. Project Maintenance

Normal annual unit maintenance will be performed between September 15 and January 31. Special procedures developed to avoid fish impacts during unit testing and start-up will be followed.

6.9. Brownlee Dam

Opportunities to shift system FRM requirements from Brownlee to Grand Coulee will be considered. See section 4.5 on FRM Shifts for more details. The shifts could occur from January through April. The reservoirs need to be back to their specific URC by April 30. The purpose of this shift is to allow Brownlee to be at higher elevations to increase the probability for increased spring flows in the Snake River. These shifts may be implemented after coordination with the TMT.

6.10. Lower Snake River Dams (Lower Granite, Little Goose, Lower Monumental, Ice Harbor)

6.10.1. Reservoir Operations

The four lower Snake River CRS projects (Lower Granite, Little Goose, Lower Monumental, and Ice Harbor) are operated for multiple purposes including fish and wildlife conservation, irrigation, navigation, hydropower generation, recreation, and limited FRM. The AAs will operate the lower Snake River projects within minimum operating pool (MOP) which is a 1.5-foot operating range above the minimum forebay elevation from April 3 until small numbers of juvenile migrants are present (approximately September 1), unless adjusted to meet authorized project purposes, primarily navigation. The lower Snake River MOP operation reduces the reservoir cross-section with the intent of reducing fish travel time. The Corps conducts a

bathymetric survey of the federal navigation channel annually to assure a 14 foot depth is maintained in the federal navigation channel. The survey conducted in the fall of 2017 demonstrated impairment of the federal navigation channel in the Lower Granite pool. In accordance with the 2019 BiOp (page 36), until sediment accumulation is addressed to provide required channel depths for safe navigation, the Corps will continue use of the variable MOP operation implemented during the 2018 fish passage season to maintain a safe navigation channel. The AAs will coordinate this operation and any other changes in MOP operations with TMT. Additional information regarding turbine operations (±1% of peak efficiency), spill operations, and juvenile transportation may be found in the most current Fish Operations Plan and Fish Passage Plan.

6.10.1.1 Waterfowl Hunting Enhancement

Little Goose and Ice Harbor dams will be operated to hold the reservoirs constant several times a week from October through January to enhance waterfowl hunting.

6.10.2. Lower Granite Dam Flow Objectives

6.10.2.1 Spring Flow Objectives

The April final runoff volume forecast at Lower Granite Dam for April to July determines the spring flow objective at Lower Granite Dam. When the forecast is less than 16 million acre-feet (MAF), the flow objective will be 85 kcfs. If the forecast is between 16 and 20 MAF, the flow objective will be linearly interpolated between 85 and 100 kcfs. If the forecast is greater than 20 MAF, the flow objective will be 100 kcfs. The flow objective is measured as the season average of the discharge at Lower Granite between the planning dates of April 3 to June 20. These flow objectives are provided as a biological guideline and will likely not be met throughout the entire migration season in all years because the flow in the Snake River primarily depends on the volume and shape of the natural runoff, while the augmentation volumes available are small in comparison to the overall objective. Flow in the Snake River during this period is supported by drafting Dworshak Dam and flow augmentation water from the upper Snake River. Dworshak storage is released from the April 10 elevation to the April 30 FRM elevation at a rate that does not exceed the State's TDG water quality standards (110% TDG) at the project.

6.10.2.2 Summer Flow Objectives

The June final runoff volume forecast at Lower Granite Dam for April to July determines the summer flow objective at Lower Granite Dam. When the forecast is less than 16 MAF, the flow objective will be 50 kcfs. If the forecast is between 16 and 28 MAF, the flow objective will be linearly interpolated between 50 and 55 kcfs. If the forecast is greater than 28 MAF, the flow objective will be 55 kcfs. The summer flow objective is measured as the season average of the discharge at Lower Granite between the planning dates of June 21 to August 31. The summer flow in the Snake River is augmented by the release of stored water upstream of Lower Granite Dam. The summer flow objectives are provided as a biological guideline and will likely not be met throughout the entire migration season in all years because there is a limited amount of stored water available for flow augmentation and the natural shape of the runoff generally produces decreasing streamflows from July to the end of August.

6.11. Lower Columbia River Dams (McNary, John Day, The Dalles, Bonneville)

6.11.1. Reservoir Operations

The four lower Columbia River CRS projects (McNary, John Day, The Dalles, and Bonneville) are operated for multiple purposes including fish and wildlife, irrigation, navigation, hydropower generation, recreation, and limited FRM. The AAs will operate the lower Columbia River reservoirs within their normal operating ranges. Additional information regarding turbine operations ($\pm 1\%$ of peak efficiency), and spill operations, may be found in the most current Fish Operations Plan and Fish Passage Plan.

6.11.1.1 Tribal Treaty Fishing

To accommodate tribal treaty fishing in the lower Columbia River, the AAs will operate The Dalles, and Bonneville Dams within a 1.5-foot range and John Day Dam within a 2.0 foot operating range during tribal fishing seasons.

6.11.1.2 McNary Waterfowl Nesting and Hunting Enhancement

From March through May, McNary Dam will be operated in the top 1 foot of the pool range for several hours every 4 days to improve waterfowl nesting conditions in the McNary pool (Lake Wallula). From October through January, McNary Dam will be operated in the top 1 foot of the operating range several times a week to enhance waterfowl hunting.

6.11.1.3 John Day Dam Minimum Irrigation Pool (MIP)

From April 10 through September 30, John Day Dam will be operated to minimize water travel time for downstream-migrating juvenile salmon by operating the forebay within the minimum irrigation pool (MIP) range of 262.5 to 264.5 feet, which is the lowest pool elevation that allows irrigation withdrawals.

6.11.2. McNary Dam Flow Objectives

6.11.2.1 Spring Flow Objectives

The spring flow objective at McNary Dam is set according to the April final runoff volume forecast at The Dalles Dam for April to August. When the forecast is less than 80 MAF the flow objective will be 220 kcfs. If the forecast is between 80 MAF and 92 MAF the flow objective will be linearly interpolated between 220 kcfs and 260 kcfs. If the forecast is greater than 92 MAF the flow objective will be 260 kcfs. The spring flow objective is measured as the season average discharge at McNary Dam between the planning dates of April 10 to June 30. The flow objective is provided as a biological guideline and will not be met throughout the migration season in all years due to variability in volume and shape of the natural runoff.

6.11.2.2 Summer Flow Objectives

The summer flow objective at McNary Dam is 200 kcfs. The summer flow objective is measured as the season average of the discharge at McNary Dam between the planning dates of July 1 to August 31. The flow in the summer at McNary is augmented by the release of stored water upstream of McNary Dam. The summer flow objective cannot be met in all years as there is a limited amount of stored water available for flow augmentation and the natural shape of the runoff generally produces decreasing streamflows from July to the end of August.

6.11.2.3 Weekend Flows

Weekend flows are often lower than weekday flows due to less electrical load demand in the region. During the spring and summer migration period (April through August), the AAs will strive to maintain McNary flows during the weekend at a level which is at least 80% of the previous weekday average.

6.11.3. Chum Operation

See section 7.3 for a detailed discussion on the chum operation.

7. Specific Operations

7.1. Canadian Storage for Flow Augmentation

7.1.1. Columbia River Treaty (Treaty) Storage

The entities can prepare and implement supplemental operating agreements. One such agreement is the annually-developed Non-Power Uses Agreement.

The U.S. Section of the Columbia River Treaty Operating Committee will seek a Non-Power Uses Agreement with Canada that will allow storage of 1 MAF of water in Canadian Treaty space for release during the migration season for the benefit of U.S. fisheries. These supplemental operating agreements must be mutually agreed upon and provide benefits for both entities.

Annual agreements between the U.S. and Canadian entities to provide flow augmentation storage in Canada for U.S. fisheries will seek to include provisions that allow flexibility for the release of any stored water to provide U.S. fisheries benefits to the extent possible by:

- Providing the greatest flexibility possible for releasing water to benefit U.S. fisheries April through July;
- Giving preference to meeting April 10 elevation objectives or achieving refill at Grand Coulee Dam over flow augmentation storage in Canada in lower water supply conditions; and

 Releasing flow augmentation storage to avoid causing damaging flow or excessive TDG in the U.S. or Canada.

The traditional Non-Power Uses Agreement is designed to provide non-power benefits in the U.S. (1 Maf of flow augmentation water stored in Canada) in exchange for non-power benefits in Canada (whitefish (Section 6.1.1) and trout (Section 6.1.2). Discussions have begun with Canada on a Non-Power Uses Agreement in 2020. Canadian objectives for whitefish and trout protection will be determined by BC Hydro in consultation with Canadian regulators.

In-season management under the Non-Power Uses Agreement is coordinated on a continuing basis by the Operating Committee to try to meet the objectives of both countries and may require mutual agreement.

In addition to the Non-Power Uses Agreement, other supplemental operating agreements may be in place or may be developed during the operating year. Historically, those agreements are developed and implemented in accordance with their terms so as to not reduce the benefits of the Non-Power Uses Agreement.

BPA and the Corps will continue to coordinate with Federal agencies, States and Tribes on Treaty operations and operating plans.

7.1.2. Non-Treaty Storage (NTS) Long Term Agreement

BPA and BC Hydro executed a Long Term Non-Treaty Storage (NTS) agreement effective 10 April 2012 through 15 September 2024. The U.S. and Canadian Entities are satisfied that mutual benefits can be achieved without adversely affecting the operation of Treaty storage in Canadian projects in accordance with the Columbia River Treaty or delivery of the Canadian Entitlement. This agreement provides 5 MAF of NTS for both power and non-power benefits for BC Hydro, BPA, and Canadian and U.S. interests, including the opportunity to provide benefits for ESA-listed fish. BPA has the right to release 0.5 Maf of storage from its account in the spring to benefit ESA-listed fish during the lowest 20th percentile of water years based on the May, April-August volume forecast at The Dalles, provided such a release was not made in the prior year (see also Section 9 below).

In addition, to the extent that Non-Treaty storage use can provide benefits to fish by storing some water in the spring for release in the summer (by the end of August), BPA will coordinate such operations with Federal agencies, States and Tribes.

7.2. Upper Snake River Reservoir Operation for Flow Augmentation

Reclamation will attempt to provide 487 KAF annually of flow augmentation from the Reclamation projects in the upper Snake River basin consistent with its Proposed Action as described in the November 2007 Biological Assessment for O&M of its projects in the Snake River basin above Brownlee Reservoir. Reclamation's flow augmentation program is dependent on willing sellers and must be consistent with Idaho State law.

7.3. Bonneville Chum Operations

The Columbia River chum salmon Evolutionarily Significant Unit (ESU) includes all naturally spawning populations and four hatchery programs of chum salmon in the Columbia River and its tributaries in Washington and Oregon. The hatchery programs include Grays River and Washougal/Duncan, Washougal/Lewis in Washington and Big Creek in Oregon. There are three major population groups (MPG) on the Columbia River, with each MPG consisting of multiple sub-populations: Coast, Cascade and Gorge (NOAA Fisheries, Lower Columbia River Recovery Plan, June 2013). The Ives/Pierce Islands spawning area is part of the Gorge MPG (Lower Gorge sub-population) and is the focus of the Bonneville chum operations described below.

The AAs plan to operate the CRS to provide flows to support chum salmon spawning, incubation and egress from, and through the Ives/Pierce Islands spawning areas. The Ives/Pierce Island complex represents a small but important spawning area and provides access to tributary spawning areas for the segment of the population that spawns in the mainstem and tributaries of the Columbia River between the Glenn-Jackson Bridge and Bonneville Dam. Listed Lower Columbia River Tule fall Chinook salmon and non-listed up-river bright fall Chinook salmon are also known to spawn in the Ives/Pierce Islands area. The 2019 BiOp recognizes that access to spawning habitat in the Ives/Pierce area is primarily a function of the Bonneville Dam tailwater. When the Bonneville Dam tailwater elevation is greater than 11.3 feet above mean sea level (msl) salmon begin to have access to the Ives/Pierce Islands spawning area. Managing the water surface elevation with the operations of Bonneville Dam has been the management measure tool used to maintain this spawning area. Chum access to spawning habitat in Hamilton, Hardy and Duncan creeks is also a function of sufficient tailwater elevation and fall rain events to recharge the aquifer and water up the spawning areas within the creeks.

Chum access and use of the available spawning area in the Ives/Pierce Island complex is driven by Bonneville Dam tailwater elevations as measured at the Tanner Creek gage. Tailwater elevations below Bonneville Dam are directly correlated with the amount of chum spawning habitat available in the Ives/Pierce Island complex. Bonneville Dam discharges have the most direct effect on tailwater elevations. However, the daily and hourly variability of tides, wind and tributary flow downstream of Bonneville Dam directly affect the required outflow from Bonneville Dam to achieve a particular tailwater elevation on a daily and hourly basis.

The tailwater operating range used over the last several years have restricted access to spawning habitat in the Ives/Pierce Island area between tailwater elevations of 11.0 and 13.0 feet. During this period most redds have been set such that Bonneville Dam tailwater elevations in the range of 11.3 to 12.5 feet would provide adequate protection. As the tailwater elevations increase above 11.3 chum typically use habitat available at the lower elevations first. Some chum salmon may spawn at elevations between 12.0 and 13.0 feet, however this habitat area is generally considered less desirable for chum spawning. As tailwater elevations increase beyond 13.0 feet, new habitat is wetted and becomes available for chum spawning. However, as tailwater elevations increase above 13.5 feet some habitat between 11.3 and 12.0 feet becomes unsuitable for chum due to higher water velocities. At a tailwater of 16.0 feet and greater, chum are forced out of suitable habitat zones. Common spawning areas at lower and higher elevations are mostly spatially distinct but there is some significant overlap. In years of high escapement and adequate

water supply, it may be possible to maximize the available habitat by first managing the tailwater for the lower elevations to benefit early arrivals, and then as conditions allow, increase the tailwater elevation to allow later arriving adults access to additional spawning habitat.

Tributary flow from Hamilton Creek can affect the access to the Ives Island habitat below 12.0 feet but has reduced impact at tailwater elevations above 12.0 feet. Chum salmon may have restricted access to Hamilton Creek at tailwater elevations less than 11.3 feet depending the flow in Hamilton Creek. With recent modifications to the fish ladder at Duncan Creek Dam, chum can now access the creek at 11.5 foot tailwater elevations. Since the year 2000, when the tailwater regulation for chum began, protection levels for incubation and emergence have not been set at elevations higher than 14 feet even when tailwater elevations during the spawning period (November-December) have exceeded 14 feet extended periods of time. The additional amount of flow augmentation required to support such a high tailwater elevation and potential number of redds affected is typically weighed against the likely consequence to the ability to refill Grand Coulee to its April 10 elevation objective.

These impacts were addressed in the 2019 BiOp which outlined, chum salmon spawning operations as having lower priority than achieving spring flow objectives or summer refill. If all of the BiOp objectives cannot be met, the AAs will work with NOAA Fisheries and the regional salmon managers to identify operations that would best benefit salmon while maintaining other fish protection measures.

There are two phases of the Ives/Pierce area chum operations: spawning (typically from early November through late December) and incubation and egress (typically from late December through early April).

7.3.1. Chum Spawning Phase

In the first week of November or when fish arrive (as coordinated with the TMT), Bonneville Dam will start operating to provide a tailwater elevation (TWE) range of 11.3-13.0 feet until spawning ends or December 31. The official project TWE gauge is located 0.9 mile downstream of Bonneville Dam's powerhouse 1 on the Oregon shore, 50 feet upstream of Tanner Creek at river mile 144.5. Generally, the range of outflow from Bonneville Dam required to maintain this TWE can vary from less than the project minimum discharge (80 kcfs) up to 135 kcfs. This range demonstrates the profound effect of natural conditions downstream of Bonneville Dam on the water elevation. Tides, wind, wave and unregulated inflows to the Columbia River all have an influence on the ability to regulate the TWE below Bonneville Dam with the outflow from Bonneville Dam.

In addition to the uncertainty and variability of downstream conditions that affect TWE at Bonneville Dam, there are many upstream variables as well. Generally, the flow at Bonneville Dam is augmented by storage releases from Grand Coulee Dam which takes approximately 24 hours to arrive at Bonneville Dam and must pass through several non-federal dams that can alter the shape and timing of the flow. Further, the volume of unregulated flow into the Columbia River upstream of Bonneville Dam is difficult to predict but is critical in meeting the spawning elevations. The ability to operate Bonneville Dam to a particular TWE constraint is contingent on the ability of the hydrosystem to forecast and manage all of these variables and conditions.

Reservoir operations upstream of Bonneville may provide additional water to help support the chum operation.

The Columbia River System is often unable to maintain the TWE within the range of 11.3-13.0 feet during daylight hours throughout the entire spawning period. Significant seasonal rain events commonly require that the operation must be modified in order to manage the additional water. Research to assess the impacts of higher flows (day and night) on chum salmon redd development indicated that increased flows nightly up to 175 kcfs delayed spawning by temporarily displacing fish until flows decreased to base levels, but did not force fish to abandon their redds and search for new locations (Tiffan et al. 2009).

7.3.2. Chum Spawning Operational Steps

The spawning operation should utilize the considerations below to minimize the establishment of high elevation redds. Managing the spawning operation to minimize the required protection level increases the probability that the protection level can be maintained through egress in the early spring.

- Early season forecasts can be used by TMT to determine a level of caution when
 choosing the spawning elevations to provide below Bonneville. A general apprehension
 to provide tailwater elevations which will achieve a protection level above 11.3 feet is
 prudent in most years. Fall precipitation can lead to chum spawning at higher elevations
 than intended. It may be difficult to commit to providing those elevations without a solid
 water supply forecast.
- If water supply forecasts indicate it is unlikely a higher protection elevation can be
 maintained through emergence TMT will consider an operation that shapes flows (for
 example: daytime tailwater > 17 feet) in a manner that would discourage additional redd
 development in the Ives/Pierce Island area as a potential tool to keep redds below high
 risk elevations.

Steps 1-7 below describe an example of a transition from a controlled operation to an uncontrolled operation when conditions are such that the daytime TWE range cannot be maintained. The steps are reversed if it is possible to return to a controlled operation and high elevation redds have not been established. There may be changes made to these steps based on the TMT discussion. The following tailwater operation was coordinated with the TMT during the October 29, 2014 meeting.

- 1) Bonneville Dam tailwater will be operated within a range of 11.3–13.0 feet during all hours.
- If necessary to pass additional flow, Bonneville Dam tailwater will be operated up to 16.5 feet during nighttime hours (1700-0600). Highest tailwater elevations will be concentrated around midnight.
- 3) If necessary to pass additional flow, Bonneville Dam tailwater will be operated up to 18.5 feet during nighttime hours (1700-0600). Highest tailwater elevations will be concentrated around midnight.

4) If necessary to pass additional flow, Bonneville Dam tailwater operating range will become 13.0–16.5 feet during daytime hours (0600-1700) with no upper limit during nighttime hours. Highest tailwater elevations will be concentrated around midnight. The Action Agencies will notify the TMT of this occurrence and coordinate further operations if necessary.

There are several conditions that typically preclude the chum spawning operation for multiple days. These events are usually forecasted well in advance, and an appropriate course of action is coordinated through TMT. Below are some examples of the conditions where the chum operation cannot be managed within the above constraints:

- Conditions downstream of Bonneville (e.g., high tides, high inflows) result in high TWE regardless of project discharge. Even at minimum discharge, these conditions could raise the TWE above the target range.
- 2) Heavy precipitation events increase inflow to the Columbia River both upstream and downstream of Bonneville Dam. The combination of low required flow at Bonneville Dam, unregulated inflows to the Columbia River upstream of Bonneville Dam, and the lack of storage capacity behind the lower Columbia River dams, result in little to no control over the resulting TWE below Bonneville Dam.

7.3.3. Chum Incubation and Egress

Washington Department of Fish and Wildlife (WDFW) will inform the TMT when they establish chum salmon spawning is complete at the Ives/Pierce Island area; this usually occurs in late December but will not extend past December 31. Following the completion of spawning, the operation is shifted to provide a minimum tailwater elevation (to be determined by the TMT). In most years an elevation between 11.3 and 11.7 is adequate. Redds established at higher elevations may not be fully protected. The end of the chum protection operation is coordinated with the TMT after it is determined that completion of emergence and egress has occurred or if the volume of flow augmentation required to maintain the protection level jeopardizes spring refill objectives.

The protection operation typically ends between mid-March and April 10. In some years emergence and egress may not be complete by April 10 and TMT may be asked to extend the tailwater protection elevation through emergency and egress. TMT will then discuss the impacts of TDG associated with spill and/or operation of the corner collector for fish passage at Bonneville Dam and its potential for negatively affecting fry in the gravel. However, typically spring flow augmentation volumes generally provide sufficient flows to sufficiently maintain the protection elevations. Bonneville starts its spring spill around April 10, but a delay in the start of spill may be needed. The chum protection level decision will be revisited at least monthly through the TMT process to assure it is consistent with the need to provide spring flows for listed Columbia and Snake River stocks.

Commented [CM1]: Has not previously been later than Dec 31?

7.3.4. Considerations for Dewatering Chum Redds

While a conservative approach to managing tailwater elevations during spawning reduces the risk of dewatering redds, it does not eliminate dewatering as a possibility. The conditions in each year vary too dramatically to allow for the development of set criteria for whether or not to dewater redds, therefore the basis for a dewatering decision depends greatly on in-season conditions so are best made with the TMT. Factors that should be considered in making a dewatering decision include:

- Number of redds that would be affected and the percentage they represent of:
 - o the overall Ives/Pierce Islands and Hamilton Springs complex;
 - o the total population spawning above the I-205 Bridge;
 - the entire ESU.
- Emergence timing based on available temperature data;
- Status of the FCRPS storage reservoir elevations;
- Expected benefit to reservoir levels and river operations which would be provided by the dewatering decision;
- Precipitation and runoff forecasts;
- Expected river operations due to power market environment;
- Status of the upriver spring Chinook, steelhead and sockeye listed stocks;
- Existence and status of a brood contingency plan.

7.3.5. Chum Redd Dewatering and Alternative Maintenance Options

If water supply conditions indicate that it is not possible to maintain the minimum tailwater elevation established in December for Bonneville Dam, the protection level may be reduced to a level that can be maintained. If chum redds are dewatered as a result of diminished water supply conditions a "rewetting operation" once a day for ~1 hour has been utilized as an interim measure to provide some level of protection in the event that water supply conditions improve sufficiently to restore the full protection level.

If protection for all redds has been suspended the TMT should consider an operation that would provide sufficient egress for chum migrating from habitat in Hamilton, Hardy and Duncan creeks. The potential impact to spring flows as a result of this operation would be evaluated through coordination with the TMT.

7.4. Description of Variable Draft Limits

Variable Draft Limits (VDLs) are period-by-period draft limits at Grand Coulee and Hungry Horse from January-March 31. These are planned limits to Firm Energy Load Carrying Capability (FELCC) generation to protect the ability to refill Grand Coulee and Hungry Horse to their April 10 elevation objectives with an 85% and 75% confidence respectively.

The VDLs are based on: (1) The April 10 elevation objective which is calculated from the forecasted March 31 and April 15 FRM elevations (2) statistical inflow volumes (85% exceedance for Grand Coulee and 75% exceedance for Hungry Horse), and (3) actual downstream flow objectives.

Commented [CM2]: CRS

VDLs are calculated monthly from January through March after updated volume forecasts and FRM elevations have been issued. The VDL at the end of a period (e.g., January 31) is computed to determine the lowest elevation where the outflow requirements and the April 10 elevation objective can be achieved using a 75%/85% probable inflow volume. For example, Hungry Horse's January VDL is computed as:

- The expected April 10 FRM elevation based on January forecast.
- Minus February 1 to April 10 inflow volume of 165.7 ksfd (75% statistical inflow volume).
- Plus February 1 to April 10 minimum discharge requirement for Columbia Falls.

The VDL is not a mandatory draft elevation and operation above the VDL is acceptable as long as it is not a higher elevation than FRM curve, FELCC is already being met, and at-site and downstream flow objectives are also being served. Also, VDLs at Grand Coulee are further limited by VDL lower limits of 1260 feet in January, 1250 feet in February and 1240 feet in March.

The statistical inflow volumes for Hungry Horse and Grand Coulee are derived as follows:

- Hungry Horse The inflow volumes used are the 75% probable inflow into Hungry
 Horse reservoir plus the 75% probable incremental at Columbia Falls. The data used to
 computed these inflow volumes for Hungry Horse are from the 2010 80 WY Modified
 Streamflows.
- Grand Coulee The inflow volumes used are the 85% probable regulated inflow volume into Grand Coulee and the 75% probable regulated incremental to Priest Rapids Dam.
 The data used to compute these inflow volumes will be taken from the results of an inseason ESP hydroregulation study that reflects the most current operational assumptions streamflow forecast.

7.5. Lake Roosevelt Incremental Storage Release Project of the Washington State Department of Ecology, Columbia River Water Management Program

7.5.1. Lake Roosevelt Incremental Storage Releases

The Lake Roosevelt Incremental Storage Releases portion of Washington State's Columbia River Water Management Program (CRWMP) result in additional water withdrawals from Lake Roosevelt for both out-of-stream use and instream flows. The Incremental draft results in a release of 82,500 acre-feet in most years, or about 1.0 foot of draft at Lake Roosevelt. For every two acre-feet of water put to out-of-stream use, one acre-foot of water will go to instream flows ("no net loss plus one-third"). In years when the March 1 final forecast of April through September runoff at The Dalles is less than 60 million acre-feet, an additional draft of 50,000 acre-feet for interruptible water users and instream flow will occur, for a total draft of 132,500 acre-feet or about 1.8 feet of draft.

7.5.2. Release Framework and Accounting for Lake Roosevelt Incremental Draft

The only way to demonstrate that the water came from Lake Roosevelt and not stream flows during the juvenile fish migration period is to draft Lake Roosevelt. As described in the 2018 CRSPA, there are two elevation objectives during the juvenile fish migration period: (1) end of June (early July) refill, and (2) August 31 draft, the latter of which is forecast based. When water is released in the April-through-June spring period from the Lake Roosevelt incremental draft water account, then Lake Roosevelt would need to miss refill by that amount. Lake Roosevelt would draft below the end of August draft limit by the amount released in both the spring and July-August summer flow augmentation periods.

7.5.3. 2020 Operations

The amount and timing of water to be released in 2020 will not be determined until the March final WSF for April – September at The Dalles is completed. Estimates of 2019 incremental storage releases will be included in the 2019 seasonal update.

7.6. Public Coordination

Actions in the WMP will be coordinated with NOAA Fisheries, USFWS, and the states and tribes in preseason planning and in-season management of flow and spill operations. This coordination will occur in the TMT process and will utilize the best available science. The WMP and associated documents are posted to the web and available to the public on the TMT website (http://pweb.crohms.org/tmt/). TMT meetings also have conference call information and WebEx web-meeting services that are available to the public.

At all appropriate decision points, the AAs will routinely seek timely input and concurrence from the USFWS on all matters affecting ESA-listed fish within the jurisdiction of USFWS through the Columbia River Treaty, International Joint Commission (International Kootenay Lake Board of Control), and all other decision making processes involving trans-boundary waters in the Columbia River basin. This will include notification of all meetings and decision points and provision of opportunities to advise the AAs during meetings and in writing, as appropriate.

8. Water Quality

8.1. Water Quality Plans

The Corps has completed a comprehensive 2014 Water Quality Plan (WQP) outlining the physical and operational changes that could be used to improve the overall water quality in the mainstem waters of the Clearwater, Snake, and Columbia rivers. The plan may be found on the following website.

http://www.nwd-wc.usace.army.mil/tmt/wg/studies/wg_plan/wg2014.pdf

8.1.1. Total Dissolved Gas (TDG) Monitoring

Exposure to high levels of TDG over long periods of time can be harmful or lethal to fish. Monitoring in the waters impacted by operations at the dams is necessary where voluntary spill is employed for juvenile fish passage to ensure that gas levels do not exceed TDG thresholds established in NOAA Fisheries BiOps, and applicable state water quality criteria and waivers. The Corps TDG monitoring program is described in the TDG Monitoring Plan of Action, which included data quality criteria for fixed monitoring stations, goals related to the accuracy, precision, and completeness of data at each fixed monitoring station and the methodologies that are used in the attempt to achieve those goals, calibration protocols (data quality control), data review and corrections (data quality assurance), and completeness of data. The TDG Monitoring Plan of Action can be found on the following website.

http://www.nwd.usace.army.mil/Missions/Water/Columbia/Water-Quality/

Updates are provided at the following links (last updated in 2019).

http://pweb.crohms.org/tmt/wqnew/tdg_monitoring/Figure%201%20-%202019%20TDG%20Monitoring%20Network%20Map.pdf

http://pweb.crohms.org/tmt/wqnew/tdg_monitoring/Table%201-%202019%20TDG%20Monitoring%20Network.pdf

The Reservoir Control Center is responsible for monitoring the TDG and water temperature conditions in waters impacted by Corps projects on the Columbia and Snake rivers. To assess water quality conditions in these waters, the Corps operates TDG and temperature monitors in the forebays and the tailwaters of the lower Columbia River/lower Snake River dams, and other selected river sites. The Corps prepares a Total Dissolved Gas Management Plan (TDG Management Plan) each year (see Appendix 4). This TDG Management Plan provides information addressing voluntary and involuntary spill, use of the spill priority list, the process for setting spill caps, TDG management policies, and the TDG monitoring program. Spill caps for individual projects may be found on the following website. http://www.nwd-wc.usace.army.mil/tmt/documents/ops/spill/caps/

9. Dry Water Year Operations

Flow management during dry years is often critical to maintaining and improving habitat conditions for ESA-listed species. A "dry water year" is defined as the lowest 20th percentile years based on the NWRFC's averages for their statistical period of record (currently 1981-2010) using the May final water supply forecast for the April to August period as measured at The Dalles (currently <72.5 MAF). The AAs will complete the following activities to further the continuing efforts to address the dry water years:

 Within the defined "buckets" of available water (reservoir draft limits identified in RPA Action 4), flexibility will be exercised in a dry water year to distribute available water

- across the expected migration season to optimize biological benefits and anadromous fish survival. The AAs will coordinate use of this flexibility with the TMT.
- In dry water years, operating plans developed under the Treaty may result in Treaty reservoirs being operated below their normal refill levels in the late spring and summer, therefore, increasing flows during that period relative to a standard refill operation.
- Annual agreements between the U.S. and Canadian entities to provide flow augmentation storage in Canada for U.S. fisheries needs will include provisions that allow flexibility for the release of any stored water to provide U.S. fisheries benefits in dry water years, to the extent possible.
- Under the long term Non-Treaty Storage (NTS) Agreement, the U.S. has firm release rights for up to 0.5 MAF of water during the spring in dry water years, if not exercised in the previous year.
- BPA will implement, as appropriate, it's Guide to Tools and Principles for a Dry Year Strategy to reduce the effect energy requirements may pose to fish operations and other project purposes.