Section 3 The Dalles Dam

1. Fish Passage Information	TDA- 1
1.1. Juvenile Fish Passage	TDA- 1
1.2. Adult Fish Passage	TDA- 1
2. Project Operation	TDA- 8
2.1. General	TDA- 8
2.2. Spill Management	TDA- 8
2.3. Total Dissolved Gas Management and Control	TDA- 8
2.4. Juvenile Fish Passage Facilities	TDA- 8
2.5. Adult Fish Passage Facilities	TDA-10
3. Facility Monitoring and Reporting	TDA-13
3.1. Inspections.	TDA-13
3.2. Zebra Mussel Monitoring	TDA-13
3.3. Reporting	TDA-13
4. Fish Facilities Maintenance	TDA-14
4.1. General	TDA-14
4.2. Juvenile Fish Passage Facilities	TDA-14
4.3. Adult Fish Passage Facilities	TDA-16
5. Turbine Unit Operation and Maintenance	TDA-18
6. Dewatering Plans	TDA-20
6.1. Guidelines for Dewatering and Fish Handling Plans	TDA-20
6.2. Juvenile Bypass Systems	TDA-20
6.3. Adult Fish Ladder	TDA-20
6.4. Powerhouse Collection System Routine Maintenance	TDA-21
6.5. Turbines	TDA-21
7. Forebay Debris Removal	TDA-22
8. Response to Hazardous Materials Spills	TDA-22
9. Endnotes	TDA-22

The Dalles Dam

1. Fish Passage Information. The locations of fish passage facilities at The Dalles Dam are shown on **Figures TDA-1** through **TDA-3**. Dates for project operations for fish purposes and special operations are listed in **Table TDA-2**.

1.1. Juvenile Fish Passage.

1.1.1. Facilities Description. Turbine units at The Dalles Dam are not screened. Juvenile fish passage consists of the ice and trash sluiceway and one 6"-orifice in each gatewell. All 6" orifices will be closed as units are dewatered. Currently unit 1 orifice is closed. The ice and trash sluiceway is a rectangular channel extending along the total length of the 22-unit powerhouse and is located in the forebay side of the powerhouse. Gatewell orifices allow flow into the sluiceway, providing a potential means of passing fish from the gatewells to the sluiceway. When any of the sluiceway gates (located in the forebay side of the sluiceway are opened, water and juvenile migrants are skimmed from the forebay into the sluiceway and deposited in the tailrace downstream of the project.

1.1.2. Juvenile Migration Timing. The primary juvenile fish passage period at The Dalles Dam is April through November. Currently juvenile migration timing is monitored by PSMFC at John Day Dam. **Table JDA-2** in **section 4** of the FPP reports data from 1999 to 2008. Since no juvenile monitoring is done at The Dalles Dam, refer to this table, and add approximately 1 day to the dates reported for each species to estimate juvenile fish arrival at The Dalles.

1.1.2.1. Diel passage at The Dalles sluiceway is affected by spill and flow conditions. In years of consistently high flow and spill, fish may be distributed higher in the water column and daytime passage may increase.

1.2. Adult Fish Passage.

1.2.1. Facilities Description. Adult fish passage facilities at The Dalles Dam are composed of a north shore fish ladder, which passes fish collected at the north end of the spillway, and an east fish ladder that passes those fish collected at the south end of the spillway and across the downstream face of the powerhouse.

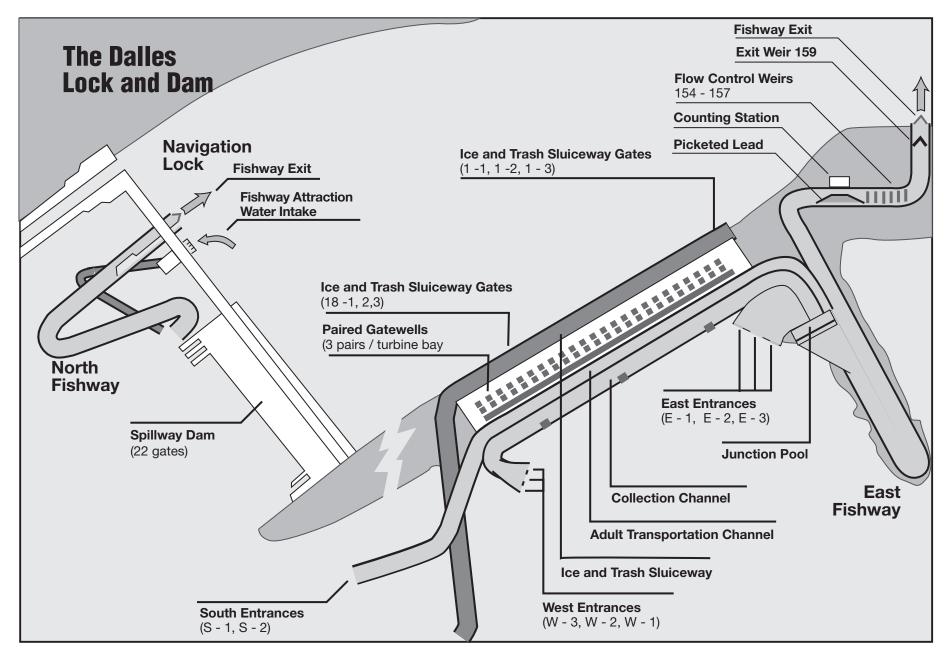
1.2.1.1. A small hydropower facility, utilizing the north fishway ladder auxiliary water supply, was constructed in 1991 and is operated by the North Wasco PUD. Adult fishway criteria associated with this facility are monitored and maintained during the daily fishway inspections. A backup auxiliary water supply system, unscreened for juveniles has been upgraded to facilitate its use if required.

1.2.2. Adult Migration Timing and Counting. Upstream migrants are present at The Dalles Dam throughout the year and adult passage facilities are operated year round. Adult salmon, steelhead, and lamprey are normally counted from April 1 through October 31 (**Table TDA-1**), and these data appear daily on the Corps adult count website. Migration timing data for these species appear in **Table TDA-2**. Sturgeon and bull trout are also counted and recorded on the WDFW fish counters' daily summary sheet comments section, but do not appear on the Corps daily website total due to relative infrequency of passage. These data are posted in the

Miscellaneous Fish Counts report during the passage season (updated periodically during the season) found on the Corps' web site, and summarized in the Annual Fish Passage Report.

1.2.2.1. The adult fish counting schedule is shown in Table TDA-1.

Table TDA-1. Adult fish counting schedule at The Dalles Dam.


Period	Counting Method
April 1 – October 31	Visual count 0500 - 2100 DST

1.2.2.2. Annual winter maintenance of adult fish facilities is scheduled from December 1 through February (in-water work period) to minimize impacts on upstream migrants.

1.2.2.3. Adult fish migration timing has been calculated for The Dalles Dam from count data collected by the Corps since 1957. Table TDA-2 summarizes adult counting periods and peak fish passage timing through 2010. The primary passage period and the earliest and latest peaks of migration recorded are listed for each species (except shad). Peak lamprey migration timing for only the years 2000-2010 appears in this table.

Table TDA-2. The Dalles Dam adult count period and peak migration timing, 1957-2010.

Species	Count Period	Earliest Peak	Latest Peak
Spring Chinook	2/20 - 6/3	4/13	5/13
Summer Chinook	6/4 - 8/3	6/6	8/1
Fall Chinook	8/4 - 12/7	9/2	9/23
Sockeye	2/20 - 12/7	6/20	7/10
Steelhead	2/20 - 12/7	7/9	9/23
Coho	2/20 - 12/7	9/3	10/25
Lamprey	2/20 - 12/7	7/12	8/1

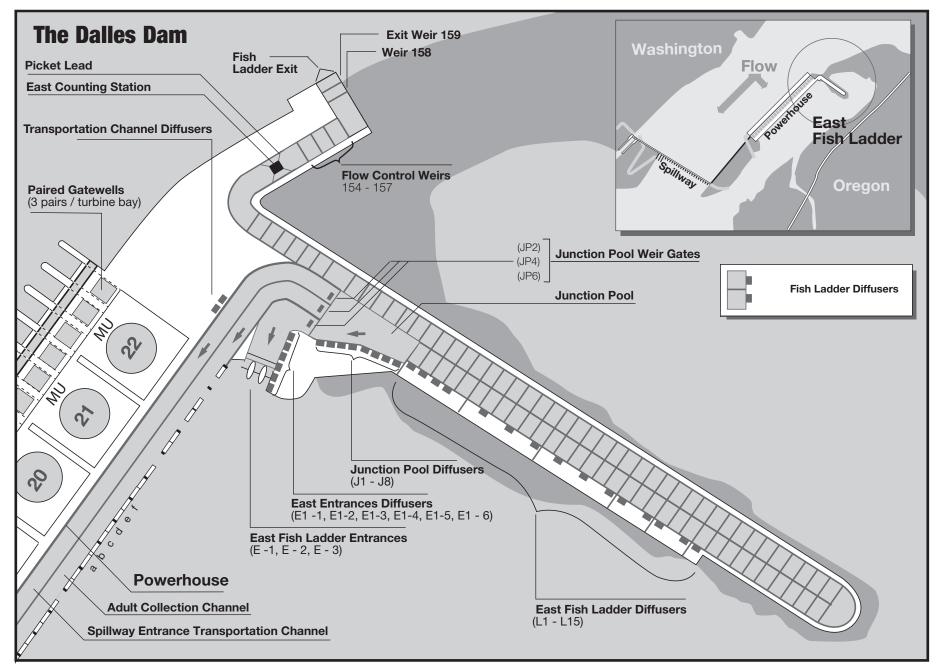


Figure TDA-2 The Dalles Dam East Fish Ladder.

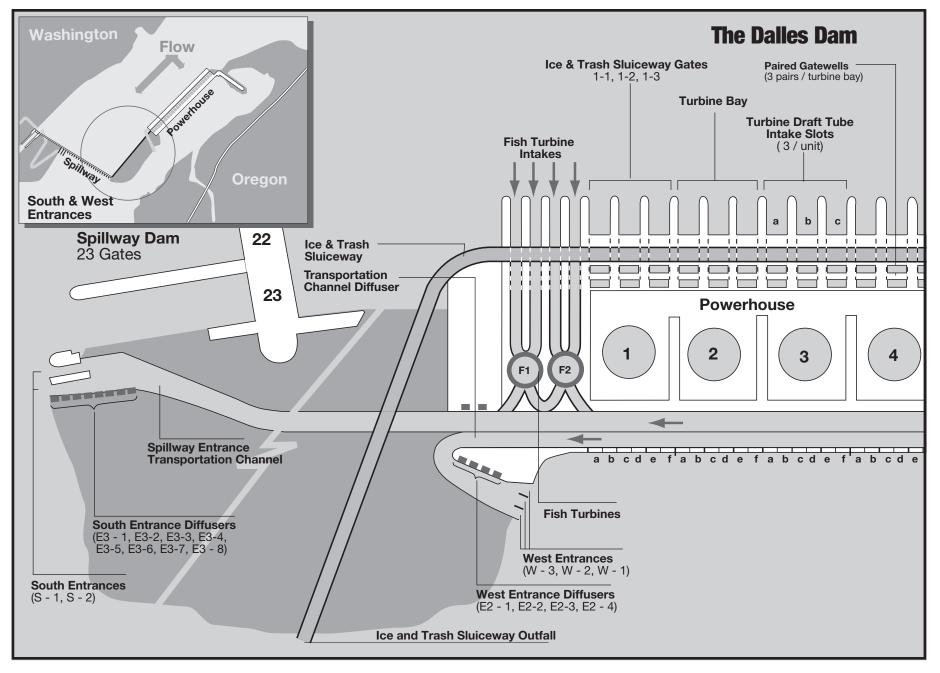


Figure TDA-3 The Dalles Dam South and West Fish Ladder Entrances.

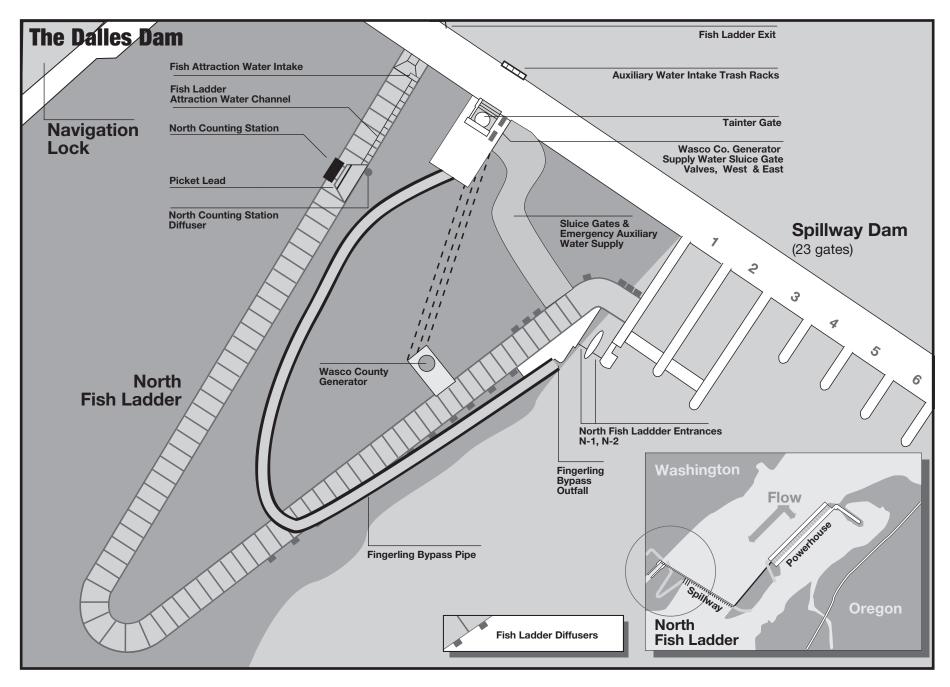


Figure TDA-4 The Dalles Dam North Fish Ladder and Spillway.

Task Name	Start	Finish	FPP Reference		Qtr 2, 2			Qtr 3, 2			Qtr 4, 2			Qtr 1, 2	2012
	40/4/40	44/00/44		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
Weekly Reports	12/1/10	11/30/11	Tda 3.3.1					1			1				
Juvenile Passage Period	4/1/11	11/30/11	Tda 1.1.2]		
TDG Monitoring	3/1/11	2/29/12	App D Table 4 Tda												
Adult Fish Passage Period	3/1/11	11/30/11	Tda 2.5.1.2]		
1% limitations	3/1/11	2/28/12	Tda 5.4												
1% soft	3/1/11	3/31/11	Tda 5.4												
1% hard	4/1/11	10/31/11	Tda 5.4	_											
1% soft	11/1/11	2/28/12	Tda 5.4												
Avian Abatement in Place	4/1/11	12/1/11	Tda 2.4.1.1 e]		
Active Avian Hazing	5/1/11	7/30/11	Tda 2.4.1.1 e												
Operate Ice and Trash Chute	4/1/11	11/30/11	Tda 2.4.1.2 e]		
Adult Fish Counting Visual 0500 -2100 DST	4/1/11	10/31/11	Tda 1.2.2.1												
Adult Lamprey Study	5/15/11	10/15/11	App A Tda 2.1												
Rake Trash Racks	6/1/11	6/15/11	Tda 2.4.1.2 a												
Winter Maintenance Adult Facilities	12/1/11	2/28/12	Tda 1.2.2.2	_											
Juvenile Fish Maintenance Season	12/1/11	3/30/12	Tda 2.4.1.1	_											
Annual Report	1/31/12	1/31/12	Tda 3.3.4	_											1/3

2. Project Operation.

2.1. General.

2.1.1. Research, non-routine maintenance, other fish related activities, and construction activities will not be conducted within 100' of any fishway entrance or exit, or within 50' of any other part of the adult fishway, or directly in, above, below, or adjacent to any fishway, unless coordinated by the project, Portland District Operations and/or Planning, or CENWP Construction office through Fish Passage Operation and Maintenance Team (FPOM) and Fish Facility Design and Review Work Group (FFDRWG). Currently coordinated special operations related to research are described in Appendix A. Alternate actions will be considered by district and project biologists in conjunction with the Regional fish agencies on a case by case basis.

2.1.2. Emergency situations should be dealt with immediately by the project in coordination with the project or district biologist. If unavailable, the biologists will be informed of steps taken to correct the situation immediately following the incident. All activities within the boat-restricted zone (BRZ) will be coordinated at least 2 weeks in advance with the project, unless it is deemed an emergency (see also **Overview** for coordination guidance.)

2.1.3. All fish passage related equipment and operation will be inspected twice daily. Additionally, a 12-hour trend for entrance differential and weir depth will be monitored daily from the data logging system to track operational changes. Results will be reported in the weekly status report.

2.2. Spill Management. See the Fish Operations Plan (**Appendix E**) for more information. A summary of the spill patterns is provided in Table TDA-6.

2.3. Total Dissolved Gas Management and Control. Total dissolved gas (TDG) levels at The Dalles are monitored in accordance with the Dissolved Gas Monitoring Program, **Appendix D**.

2.3.1. Excessive TDG levels, which may harm fish, will be controlled to the extent possible, subject to river flow conditions. Control measures will include system spill allocations through the spill priority list issued by Reservoir Control Center (RCC), nighttime or daytime spill limits, and shaping of spill discharge.

2.4. Juvenile Fish Passage Facilities.

2.4.1. Operating Criteria.

2.4.1.1. December 1 through March 31 (Winter Maintenance Period)

a. With the use of an ROV, inspect trashracks and main unit intakes, and if necessary, remove debris from forebay, trashracks, gatewell slots, and gatewell orifices such that these areas are free of debris on April 1.

b. Inspect, lubricate, and test hoist-operated chain gates, end gates, and hoists for operation as needed.

c. Inspect and correct any epoxy or concrete deficiencies on the ice and trash sluiceway walls and floors, where accessible.

d. Inspect and, where necessary, repair spill gates and control systems. The spillway, except for coordinated changes, must be able to achieve spill patterns on April 1.

e. Reinstall or repair avian predator control lines as soon as possible following damage or removal. Install and maintain new avian predator control lines in locations determined to be significantly impacted by avian predators. Avian abatement measures shall be in place by April 1 unless this work is delayed because of inclement weather. If this occurs, the work will be completed as soon as the weather permits after that date. Hazing will be implemented May 1 through July 31. However, there will be no avian abatement measures, other than avian lines, performed from August through May each year.

f. December 1 through December 15, see **2.5.1.1.f and 2.5.1.1.g** for Ice and Trash Sluiceway (ITS) operations for adult fallback and steelhead kelts.

g. December 16 through February 28 discontinue operation of the ITS on a 24 hour basis. Close endgate, and open sluice gates 1-1 and 17-3 to allow fish egress from the ITS when equalized with the forebay.

2.4.1.2. April 1 through November 30 (Fish Passage Season).

a. Measure gatewell drawdown a minimum of once per week, and more frequently, three times per week or more, as needed during high debris periods. Clean trashracks as flow conditions dictate, or when drawdown in gatewell slots exceeds 1.5". Units 3, (or any other unit 1-5 which minimizes fish impacts), 8 and 18 will be inspected by ROV between June 1 and June 15. This will determine if there is a debris buildup on the trashracks. If so, trashracks will be raked. All trashracks can be raked using the Hammerhead crane.

b. Remove debris from the forebay as needed by operating sluiceway.

c. Inspect all gatewells daily. The project will clean gatewells before the gatewell water surface becomes half covered with debris. If, due to the volume of debris, it is not possible to keep the gatewell surfaces at least clear, they will be cleaned at least once daily. Turbines with a gatewell fully covered with debris will not be operated except to be in compliance with other coordinated fish measures, and then only on a last on/first off basis.

d. Project maintenance will permanently close the gate slot orifices as the unit intakes are serviced over the next few years, utilizing orifice plates as covers.

e. Open ice and trash sluiceway (ITS) gates 1-1, 1-2, and 1-3 over operating Main Unit-1, sluiceway gate 8-3 over Main Unit 8, 18-2, and 18-3 over operating Main Unit 18. If either of these main units is out of service, operate the next available main unit and associated gates adjacent to these units, (i.e. operate MU-2 w/gates if MU-1 is OOS, and operate MU-17 w/gates or MU-19 w/gates if MU-18 is OOS). The ice and trash sluiceway will be operated on a 24-hour basis April 1 through November.

f. When units are being dewatered, leave endgate open, close sluicegates to expose gatewell orifices, then install orifice blocker. After orifice-sealing devices are installed, sluicegates should be returned to the open position. Installation time should be approximately 30 minutes.

g. Efforts should be made to keep all petroleum out of gatewells. Project environmental section will determine cleanup efforts if needed. Regardless of unit operating status, oil accumulations will be dealt with promptly.

h. Reinstall or repair avian predator control lines as soon as possible following damage or removal. Install and maintain new avian predator control lines in locations determined to be significantly impacted by avian predators. Implement avian hazing measures as necessary from April through September only.

i. Follow the schedule in **Table TDA-6** for spill. This schedule was developed for juvenile fish passage.

2.5. Adult Fish Passage Facilities.

2.5.1. Operating Criteria.

2.5.1.1. December 1 through February (Winter Maintenance Period).

a. Inspect and calibrate all staff gages and water level indicators. Repair and/or clean where necessary.

b. Dewater all ladders and inspect for projections, debris, or plugged orifices that could injure fish or slow their progress up the ladder. Make necessary repairs and complete preventative maintenance.

c. Pull exit trashracks and inspect and clear debris from the ladder exits.

d. Inspect count station equipment and assure operational. Reinstall picket leads at counting stations prior to watering up the ladders. Ensure the leads are properly seated.

e. Only one of the two adult fish facilities may be out of service at any one time unless coordinated through FPOM. The operating facility shall be operated at full fish passage season criteria unless specially coordinated. Outage periods will be minimized to the extent practicable.

f. December 1 through December 15, Open Ice and Trash Sluiceway (ITS) gates 1-2, and 1-3 over operating Main Unit-1, and gates 18-1 and 18-2 over operating Main Unit 18. If either of these main units is out of service, operate the next available main unit and associated gates adjacent to these units, (i.e. operate MU-2 w/gates if MU-1 is OOS, and operate MU-17 w/gates or MU-19 w/gates if MU-18 is OOS). The ice and trash sluiceway will be operated on a 24-hour basis December 1 through December 15. This operation will be implemented on a trial basis and considered for longer term implementation pending review at the comprehensive check-in in 2013.

TDA-10

g. December 16 through February 28, discontinue operation of the ITS on a 24 hour basis. Close endgate, and open sluice gates 1-1 and 18-3 to allow fish egress from the ITS when equalized with the forebay.

2.5.1.2. March 1 through November 30 (Fish Passage Season).

a. All Adult Facilities.

1. Water depth over fish ladder weirs: $1.0' \pm 0.1'$. During the shad passage season (> 5000 shad/count station/day/at Bonneville Dam): $1.3' \pm 0.1'$. (See 2.5.1.2.b.2. and 3. for an exception).

2. Water temperatures will be measured in count station of each adult fishway and station service penstock. Temperatures will be recorded in the fishway status report. When water temperature reaches 700 F, all fish handling activities will be coordinated through FPOM prior to any action to verify protocols that will be followed.

3. Head on all entrances: 1' to 2' (1.5' optimum). Refer to **paragraph 3.3.1**., Routine Maintenance, when unable to achieve head criteria.

4. A water velocity of 1.5 to 4 fps (2 fps optimum) shall be maintained for the full length of the powerhouse collection channel and the lower ends of the fish ladders that are below the tailwater. Fishway channel water velocities will be measured three times weekly, daily preferred, during adult fish passage (Mar 1 - Dec 1) part of the fishway inspection program. Floats will be timed through all fishway channels that are supplemented by auxiliary water. Results will be provided in the project weekly fishway status report.

5. Remove debris as required to maintain head below 0.5' on attraction water intakes and trash racks at all the ladder exits, with a 0.3' maximum head on all picket leads. Debris shall be removed when significant amounts accumulate.

6. Necessary staff gauges and water level indicators will be readable at all water levels encountered during the fish passage period and accuracy checked weekly. Instruments will be recalibrated when necessary, and ASAP.

7. Main entrance weir depths: 8' or greater below tailwater. Maintain a minimum tailwater at 70' msl to remain in entrance weir criteria operating range, which is regulated by RCC.

8. Count station crowders shall remain in the maximum width possible while visual counting and/or video-taping is being conducted. The crowder shall not be closed to less than 18" width. If passage is impaired by this condition, the count slot may be widened until proper passage conditions are achieved, even though count accuracy may be compromised to some degree. Project biologists, FFU, and fish counters shall coordinate to achieve optimum count slot passage and/or

count accuracy conditions. The crowder shall remain fully open during hours when no fish counting is performed.

9. March 1 through March 31, Open Ice and Trash Sluiceway (ITS) gates 1-2, and 1-3 over operating Main Unit-1, and gates 18-1 and 18-2 over operating Main Unit 18. If either of these main units is out of service, operate the next available main unit and associated gates adjacent to these units, (i.e. operate MU-2 w/gates if MU-1 is OOS, and operate MU-17 w/gates or MU-19 w/gates if MU-18 is OOS). The ice and trash sluiceway will be operated on a 24-hour basis March 1 through March 31. This operation will be implemented on a trial basis and considered for longer term implementation pending review at the comprehensive check-in in 2013.

b. East Fishway.

1. Removable weirs #154 - #157 will drop into the ladder at a differential (water surface at respective weir location relative to the forebay) of 2.5' +/- 0.1'.

2. Telescoping weir #159 will adjust to maintain 1.1 ± 0.1 depth over the weirs, measured below the counting station.

3. Telescoping weir #158 will track 1' + 0.1' below weir #159 at all times during fishway operation.

c. North Fishway Entrance. Operate one entrance weir, N1 or N2. Project biologists and Wasco Co. will work in conjunction to maintain fishway entrances within established criteria.

d. Powerhouse.

1. West Powerhouse Entrance: Operate entrance weirs W1 and W2. W3 will be closed at 81'msl, but remain operational as backup to W1 and W2.

2. East Powerhouse Entrance: Operate entrance weirs E2 and E3 to maintain gate crest > 8'below tailwater, currently operated at 13'below tailwater. Weir E1 to be closed at 81' msl, but remain operational. At lower range of tailwater elevation, E1 may be operated manually at any depth to provide criteria entrance differential.

3. Operate east ladder junction pool weirs at the following minimum depths in relation to east entrance tailwater surface elevation:

JP6.....>7'

4. South Spillway Entrance: Operate entrance weirs S1 and S2 to maintain gate crest at 8' or greater below tailwater.

5. Discharge from the two operating fish units will be adjusted to maintain criteria at all associated fishway entrances. Discharge volume will be dependent on criteria levels at entrances.

3. Facility Monitoring and Reporting.

3.1. Inspections.

3.1.1. The results of all inspections and the readiness of the facilities for operation will be reported to the FPOM at the meeting immediately prior to the fish passage season.

3.1.2. During fish passage season, fish passage facilities will be inspected at least twice per day/seven days a week to assure operation according to established criteria.

3.1.3. During winter maintenance season, fish passage facilities will be inspected once per day/at seven days a week.

3.1.4. More frequent inspections of some facility components will occur as noted in the text.

3.1.5. Additional fishway inspections may be performed by FFU and fish agencies.

3.2. Zebra Mussel Monitoring. A zebra mussel monitoring program will continue. These organisms have become a serious problem elsewhere in the country and may become introduced into the Columbia River basin. Inspections should also be made when dewatering all project facilities.

3.3. Reporting.

3.3.1. Project biologists shall prepare weekly reports throughout the year summarizing project operations. The weekly reports will provide an overview of how the project and the fish passage facilities operated during the week and an evaluation of resulting fish passage conditions. The reports shall include:

a. Any out-of-criteria situations observed and subsequent corrective actions taken;b. Any equipment malfunctions, breakdowns, or damage along with a summary of resulting repair activities;

c. Adult fishway control calibrations;

d. STS and VBS inspections;

- e. AWS closures (i.e. cleaning times);
- f. Any unusual activities which occurred at the project which may affect fish passage.

3.3.2. The weekly reports shall cover a Sunday through Saturday period and they shall be emailed to CENWP-OD and other interested parties as soon as possible the following week, with a copy to CENWD-PDW-R (RCC).

3.3.3. The project biologists shall prepare a memo for the record for any negative impact to fish or fishways. This memo will be sent to FPOM by the next working day. Items that shall be included in the memo are:

a. Time and date.

b. Nature of activity that lead to fish impact.

c. Agency responsible for the impact, or the reportee if no responsible party can be identified.

d. Fish numbers, species, origin, discernible external injuries, tags, etc.

e. Future actions to avoid a similar impact.

f. Any relevant photos.

3.3.4. The project biologists shall prepare an annual report by January 31, summarizing the operation of the project fish passage facilities for the previous year.

3.3.4.1. The report will cover from the beginning of one adult fish facility winter maintenance period to the beginning of the next.

3.3.4.2. The annual report also will include a description of all actions taken to discourage avian predation at the project, with an overview of the effectiveness of the activities in discouraging avian predation.

3.3.4.3. The annual report will be provided to CENWP-OD in time for distribution to FPOM members at the February meeting.

4. Fish Facilities Maintenance.

4.1. General.

4.1.1. Routine Maintenance.

4.1.1.1. Staff gages will be installed, cleaned, and/or repaired as required.

4.1.1.2. The zebra mussel monitoring program will continue. This includes veliger sampling, colonization sample units, and dewatering inspections. These organisms have become a serious problem elsewhere in the country and may become introduced into the Columbia River basin.

4.1.1.3. Routine fishway maintenance, to the extent practicable, will be conducted during periods when passage has been documented to be at its lowest to minimize impacts to migrating salmonids. Maintenance activities that occur during the fish passage period and that may affect fish passage will be reported in the weekly reports.

4.2. Juvenile Fish Passage Facilities.

4.2.1. Routine Maintenance.

4.2.1.1. Collection and Transportation Systems. The Dalles Dam ice and trash sluiceway will receive preventive maintenance throughout the year. During the juvenile fish passage season, this will normally be above water work, such as maintenance of automatic systems, air lines, electrical systems, and monitoring equipment. The system is

visually inspected in all accessible areas for damaged equipment and areas that may cause problems to the juvenile fish. Any problem areas identified are repaired and modifications to the channel and general maintenance are completed. The trash racks are raked if necessary as determined by ROV inspection just prior to the juvenile fish passage season (April 1), between June 1 and June 15, and whenever trash accumulations are suspected because of increased head across the trash racks.

4.2.1.2. Turbines and Spillways. Maintenance and routine repair of project turbines and spillways are a regular and recurring process which require that units be shut down for extended periods (see **Appendix F. Dewatering Plans**.) The schedule for this maintenance is reviewed by the project and district biologists and coordinated within NWP, NWD, BPA, and among fish agencies and tribes through the FPOM. Certain turbine and spillway discharges at the projects are secondarily used to attract adult fish to the fishway entrance areas. The maintenance schedules for these turbines and spillways will reflect equal weighting given to fish, power, and water management, and will be coordinated with the appropriate resource agencies. No other fish related restrictions regarding maintenance will be placed on any units at this project, except to coordinate research activities. Some types of turbine maintenance will require testing operation of the turbine throughout its full range before returning it to normal service. Units which should receive low priority for scheduling maintenance during the fish passage season are F1, F2, 1, 2, 3, 4, 8, and 18 (during ice and trash sluiceway operation).

4.2.2. Non-Routine Maintenance. Maintenance of all fish related facilities will be carried out as described below. Unscheduled maintenance that will have a significant impact on juvenile fish passage shall be coordinated through FPOM on a case-by-case basis by project and CENWP-OD biologists. The CENWP-OD biologists will be notified as soon as possible after it becomes apparent that maintenance repairs are required. The Operations Project Manager has the authority to initiate work prior to notifying CENWP-OD when delay of work will result in unsafe situations for people, property, or fish. Information required by CENWP-OD includes: (see also **Overview** for the coordination form).

- 1. Description of the problem.
- **2.** Type of outage required.
- **3.** Impact on facility operation.
- **4.** Length of time for repairs.
- **5.** Expected impacts on fish passage.

4.2.2.1. Collection and Transportation Systems. The ice and trash sluiceway is now being used as a juvenile bypass system.

a. The chain/hoist gates are fully opened during normal operation. If a chain gate fails, an adjacent gate can be operated until repairs can be made.

b. Inspect all gatewells daily. The project will clean gatewells before the gatewell water surface becomes half covered with debris. If due, to the volume of debris, it is not possible to keep the gatewell surfaces at least half clear, they will be cleaned at least once daily. Turbines with a gatewell fully covered with debris will not be operated except on a last on/first off basis, if required to be in compliance with other coordinated fish measures. This is to maintain clean orifices and minimize fish injury.

c. If a gate hoist fails, it will be repaired promptly. The gate will be removed when there are problems with the seal and the difficulty cannot be repaired promptly. If the epoxy-lined section of the sluiceway is damaged, it will be repaired.

d. To prepare a turbine for dewatering, the ice/trash sluiceway can be temporarily closed to install a gatewell orifice plug.

4.2.2.2. Turbines and Spillways- Spill Gate Failure. If a spill gate becomes inoperable, the operators will make the changes necessary to accommodate the spill and then immediately notify the Project Operations supervisor and the project biologist to determine the best pattern to follow until repairs can be made. This interim operation shall be coordinated with FPOM and FFDRWG through the CENWP-OD biologist, who will, depending on coordination, provide additional guidance to the project (see also 2.2. Spill Management).

4.3. Adult Fish Passage Facilities.

4.3.1. Routine Maintenance. Maintenance activities that occur during the fish passage period and that may affect fish passage will be reported in the weekly reports.

4.3.1.1. Fishway Auxiliary Water Systems. The Dalles Project fishway auxiliary water is provided by discharge from hydroelectric turbine systems. Preventive maintenance and normal repair occur throughout the year. Trashracks for the AWS intakes will be raked when drawdown exceeds criteria. When practicable, rake trashracks during the time of day when fish passage is least affected.

4.3.1.2. Powerhouse and Spillway Adult Collection Systems. Preventive maintenance and repair occurs throughout the year. During the adult fish passage season the maintenance will not involve any operations that will cause a failure to comply with the fishway criteria, unless specially coordinated. Inspection of those parts of the adult collection channel systems, such as diffusion gratings, picket leads, and entrance gates, will be scheduled once per year during the winter maintenance season while the system is dewatered. An inspection during first week of August with the system watered up will also be conducted (see section 5. Dewatering Plans.). A diver or underwater video system may be used for underwater inspections. Any non-routine maintenance and fishway modification will be handled on a case-by-case basis.

4.3.1.2.1. The project fish biologist or alternate Corps fish personnel will attend all dewatering activities potentially involving fish, as well as inspections to provide fish input.

4.3.1.3. Adult Fish Ladders and Counting Stations. The adult fish ladders will be dewatered once each year during the winter maintenance period. Unless specially coordinated, only one ladder will be dewatered at a time, with the other ladder capable of operating within criteria. During this time, the ladders are inspected for blocked orifices, projections into the fishway that may injure fish, stability of the weirs, damaged picket leads, exit gate problems, loose diffuser valves, ladder orifice reduction plates, malfunctioning equipment at the counting stations, and other potential problems.

Problems identified throughout the passage year that do not affect fish passage, as well as those identified during the dewatered period are then repaired. Trashracks at the ladder exits and the north AWS intake will be raked when criteria are exceeded. Rake trashracks between 1100 and one hour prior to sunset. Fish count station windows will be cleaned when necessary, and when practicable.

4.3.2. Non-Routine Maintenance. Maintenance activities that occur during the fish passage period and that may affect fish passage will be reported in the weekly reports. Non-routine maintenance that will significantly affect the operation of a facility, such as repair of displaced diffuser gratings, will be coordinated with the Region, through FPOM. Coordination procedures for non-routine maintenance of adult facilities are the same as for juvenile facilities (paragraph **3.2.2, and Overview section**).

4.3.2.1. Fishway Auxiliary Water Systems. Most fishway auxiliary water systems operate automatically. If the automatic system fails, the system will be manually operated by the project personnel until the system is repaired. When this operation becomes necessary, project personnel will increase surveillance on the adult system to ensure that criteria are being met. In the event of AWS failure, FPOM will work with the project to determine the best operating procedure.

a. Powerhouse. If one of the two fishway auxiliary water turbines fails or malfunctions for eight hours or longer, use the following sequential procedure until a fishway entrance head of 1' is achieved:

1. Increase discharge of remaining operating fish unit to maximum operating capacity.

2. Close entrance weir S1.

- **3.** Raise entrance weir E2 and E3 to 8' depth.
- 4. Close entrance weir S2 in 1' increments.
- 5. Close entrance weir W2 in 1' increments.
- 6. Close entrance weir W1 in 1' increments.

7. Differentials for open entrances should be checked between each of the above steps.

b. If both of the fishway auxiliary water turbines fail or malfunction, regardless of fish passage season, the adult fish passage facility will be operated as follows:

1. Raise the south entrance weirs to elevation 81'msl (closed position).

- 2. Close west entrance.
- **3.** Close entrance weir E1 and E2 and keep E3 at 6' depth

TDA-17

c. North Ladder. If the North Wasco County power unit auxiliary water system fails, the backup auxiliary water system will be started and the system operated at criteria. If the backup auxiliary water system fails, N1 will remain open with a weir depth of 6' below the tailwater surface.

4.3.2.2. Powerhouse and Spillway Adult Fish Collection Systems. The Dalles Dam contains several types of fishway entrances. In most cases, if failures occur, the entrance will be operated manually by project personnel until repairs are made. If this operation becomes necessary, project personnel will increase surveillance on the adult system to ensure criteria are being met. In those cases in which the failure will not allow the entrance to be operated manually, the gate will be maintained, to the extent possible, in an operational position. If this is not possible, the entrance will be repaired expediently, and it will be returned to manual or automatic control at the earliest possible date.

4.3.2.3. Adult Fish Ladders and Counting Stations. The ladder structures include picket leads, counting stations, fishway exits, and overflow weirs with orifices. Picket leads with excessive spacing (greater than 1") erosion of concrete around the picket leads, or missing pickets can allow fish into areas where escape is not likely. If picket lead failure or concrete erosion occurs, then the timing and method of repair will depend upon the severity of the problem. The decision of whether or not to dewater the fishway and repair any problem will be made in coordination with the fish agencies and tribes through the FPOM.

4.3.2.4. Diffuser Gratings. Diffuser chambers for adding auxiliary water to fish ladders and collection channels are covered by gratings attached by several different methods. Diffuser gratings are normally checked during the winter maintenance period to make sure they are in place. These inspections are done by either dewatering the fish passage system and physically inspecting the diffuser gratings, or using underwater video cameras and divers or other methods to inspect the gratings. Diffuser gratings may come loose during the fish passage season due to a variety of reasons. If a diffuser grating is known to or suspected of having moved, creating an opening into a diffuser chamber, close associated diffuser valve ASAP. Efforts must immediately be taken to correct the situation and minimize impacts on adult fish in the fishway. If possible, a video inspection should be made as soon as possible to determine the extent of the problem. If diffuser gratings are found to be missing or displaced, creating openings into the diffuser chambers, a method of repair shall be developed and coordinated with the fish agencies and tribes through the established FPOM coordination procedure. Repairs shall be made as quickly as possible unless coordinated differently.

5. Turbine Unit Operation and Maintenance.

5.1Through the juvenile fish passage season, April 1 through November 30, *and* from March 1 through March 31 and December 1 through December 15 to aid adult steelhead fallbacks or kelts, either turbine unit 1 or unit 2 or both units will operate during daylight hours unless specially coordinated with FPOM. In order to provide favorable adult fish passage conditions while meeting transmission line needs, the main powerhouse turbine units will operate in the priority outlined in Table TDA-4 below.

PERIOD	PRIORITY
Fish Passage Season	1 and/or 2, 3 and/or 4, 8, 18*
(April 1 through November 30)	
If more units are needed operate one unit from	block 5-8, block 9-12,
each block moving west to east	block 13-16, block 17-22
If additional units are still needed operate one	block 5-8, block 9-12,
unit from each block moving west to east.	block 13-16, block 17-22
December 1 through December 15	1 and/or 2, 3 and/or 4, 8, 18^{\dagger}
December 16 through February 28	1-22 in any order
March 1 through March 31	1 and/or 2, 3 and/or 4, 8, 18^{\dagger}

Table TDA-4. Turbine unit operating priorities for The Dalles Dam. DEDICOD

*During fish passage season- Unit 1 and/or 2, Unit 3 or 4, Units under open sluice gates 1,8,18

[†] During the March and December operation for adult steelhead fallbacks and kelt passage – Unit 1 and/or 2 and Unit 18 must be operated under at least 2 open sluice gates per unit

5.2. The project turbine unit maintenance schedules will be reviewed by project and district biologists for fish impacts and be coordinated with FPOM.

5.3. Guidelines for operation of the turbine units within 1% of best efficiency at various head ranges are shown in **Table TDA-5**.

5.4. To the extent technically feasible, turbines will be operated within $\pm -1\%$ of best turbine efficiency from April 1 through October 31 (as specified in the BPA load shaping guidelines). However, during the rest of the year, the project will continue to operate units within the turbine efficiency range, except as specifically requested by BPA to do otherwise as power requirements demand.

5.5. When it is necessary to operate turbines outside of the 1% efficiency range, the units will be selected according to the following guidance: Units 7 through 14 will be selected first, spacing by at least one unit. For example, assuming they are available to operate, the following sequence might be used: 7, 9, 11, 13, 15, 5, 2, 1, 8, etc. Since each successive unit in this list is thought to pass more fish, this outage priority sequence is intended to have a lower negative impact on fish during turbine unit passage, if units are taken out of service in this order.

5.6. Units may be operationally tested for up to 30 minutes before going into maintenance status by running the unit at speed no load and various loads within the 1% criteria to allow premaintenance measurements and testing AND TO ALLOW ALL FISH TO MOVE THROUGH THE UNIT. Units may be operationally tested after maintenance or repair while remaining in maintenance or forced outage status. Operational testing may consist of running the unit for up to a cumulative time of 30 minutes (within 1% criteria) before it is returned to operational status. Operational testing OF UNIT UNDER MAINTENANCE is in addition to a unit in run status (E.G. MINIMUM GENERATION) required for power plant reliability. Operational testing may deviate from fish priority units and may require water that would otherwise be used for spill if the running unit for reliability is at its 1% minimum load. Water will be used from the powerhouse allocation if possible, and water diverted from spill for operational testing will be minimized to that necessary to maintain and assure generation system reliability. **5.7.** To reduce the chance of debris washing onto the tail log sill during tail log installation in units 19 - 22, fish unit loading may be reduced to about 8 MW for 30 to 60 minutes; and entrance weir E1 may be closed for the same duration of time.

6. Dewatering Plans.

6.1. Guidelines for Dewatering and Fish Handling Plans have been developed by the projects and approved by FPOM, and are followed for most project facilities dewaterings. These plans include consideration for fish safety and are consistent with the following general guidance. The appropriate plans are reviewed by participants before each salvage operation.

6.1.2. The project fish biologist and/or alternate Corps fish personnel will attend all project activities involving fish handling.

6.1.3. The fish agencies and tribes are encouraged to participate in all ladder dewaterings. Agency fish count supervisor required, per contract, to attend.

6.2. Juvenile Bypass Systems. (Not applicable for this Project)

6.3. Adult Fish Ladder.

6.3.1. Routine maintenance.

6.3.1.1. When possible, operate the ladder to be dewatered at orifice flow with the AWS off for at least 24 hours, but not more than 96 hours prior to dewatering.

6.3.1.2. A project biologist will assure that fish rescue equipment is available, and will coordinate to ensure adequate numbers of personnel will be available to move fish out of the dewatered ladder.

6.3.1.3. Project personnel will install exit bulkheads to shut down ladder flow. Where possible, a minimum flow of 1"-2" will be maintained in the ladder until fish are rescued.

6.3.1.4. The project biologist or alternate Corps fish personnel will oversee fish rescue when the ladders are dewatered. The fish are then transported to the forebay or tailwater, depending on the fish life stage (adults to forebay, juveniles to tailrace), for release. If a ladder is dewatered in the spring or summer, identifiable steelhead kelts should be released into the tailrace.

6.3.1.5. Orifice blocking devices, with attachment ropes tied to handrails may be placed in the lower-most weirs to prevent fish from re-ascending the dewatered portion of the adult fishway. Use of orifice blocking devices will be at the discretion of the project biologist. The fishway return-to-service checklist is as follows:

- **a.** Remove orifice blocking devices if used.
- **b.** Activate automation for systems.
- **c.** Assure all count station lighting is operational.
- **d.** Open count station crowder

- e. Close picket leads.
- f. Remove all tools, equipment, and debris from inside ladder.

6.3.2. Non-Routine Maintenance.

6.3.2.1. When possible, discontinue fishway auxiliary water and operate ladder at reduced flow as long as possible (prefer 3-24 hours) prior to dewatering.

6.3.2.2. Follow steps **6.3.1.3.** through **6.3.1.5.** above.

6.4. Powerhouse Collection System Routine Maintenance.

6.4.1. During the pumping or draining operation to dewater a portion or the entire collection channel, the water level will not be allowed to drop so low it strands fish. Personnel shall remain present onsite during pumping operations to ensure stranding does not occur or a water level sensor that de-activates the dewatering process will be used.

6.4.2. The project biologist will ensure that rescue equipment is available if needed.

6.4.3. The project biologist or alternate Corps fish personnel will provide technical guidance on fish safety and will assist directly in rescue operations.

6.5. Turbines.

6.5.1. Gatewells need not be dipped as is required at other projects due to the lack of VBSs. Immediately before draining it will be operated at speed/no load briefly to flush fish out of the draft tube.

6.5.2. If the turbine unit draft tube is dewatered, operate unit with full load for a minimum 15 minutes prior to immediately installing tail logs. If not possible to load, run unit at speed-no-load for minimum 15 minutes. Install bottom two tail logs side-by-side first before stacking the remainder to minimize sturgeon from entering the draft tube before dewatering. This is necessary for both scheduled and unscheduled outages.

6.5.3. If a turbine unit is idle and partially dewatered, and tail logs are put into place, an adequate safety pool may be maintained for up to 4 days to accommodate fish trapped in the draft tube (If longer timeframes are needed for the safety pool, project fisheries will coordinate with FPOM on a case-by-case basis). The safety pool will be maintained at an appropriate level which will be determined by the project biologist.

6.5.4. Fish rescue personnel will inspect dewatered turbine draft tubes and intakes as soon as the water levels reach a depth permitting visual inspection and the hatch cover is opened. The project biologist or alternate Corps fish personnel will provide technical guidance on fish safety, will assure that rescue equipment is available if needed, and will directly participate in fish salvage.

7. Forebay Debris Removal.

7.1. Debris at projects can impact fish passage conditions. It can plug or block trashracks, gatewell orifices, dewatering screens, separators, and facility piping resulting in impingement, injuries, and descaling of fish. The preferred option is to remove debris at each project when possible to avoid passing a debris problem on to the next project downstream. This is not always possible at each project as some projects do not have forebay debris removal capability. In this case, the only viable alternative is to spill to pass the debris.

7.2. Special spill operations that don't follow the normal spill schedule or volume limits will be coordinated prior to their execution. Normally, the project shall contact CENWP-OD at least two workdays prior to the day the special operation is required. Using information provided by the project, CENWP-OD will coordinate with FPOM and with RCC, as necessary. Once the coordination is complete, RCC will issue a teletype detailing the special operations.

8. Response to Hazardous Materials Spills. The Dalles Project's guidance for responding to hazardous substance spills is contained in its Emergency Spill Response Plan. This guidance will be followed in case of a spill.

8.1. Project Fisheries will be contacted as soon as possible after a hazardous material release and prior to any modification to fishway operations. The project biologist will in turn contact the CENWP-OD biologist and FPOM. Attempts should be made to first contact the project biologist on duty. During fish passage season there is a project biologist on duty seven days a week. If a project biologist cannot be reached by radio or in the office, attempts to contact Project Fisheries will occur in the following order:

- 1. Bob Cordie- home and mobile numbers are available in the Control Room.
- 2. Bern Klatte (503-808-4318) or Tammy Mackey (503-961-5733).
- 9. Endnotes. (Not applicable to this Project)

Dam.													
			s 1 - 14		Units 15-22								
Head	Lower	Lower	Upper	Upper	Lower	Lower	Upper	Upper					
Ft	Limit	Limit	Limit	Limit	Limit	Limit	Limit	Limit					
	MW	cfs	MW	cfs	MW	cfs	MW	cfs					
55	35.1	8,854	44.1	11,108	38.5	9,643	49.3	12,346					
56	35.9	8,875	45.1	11,147	39.0	9,554	50.6	12,402					
57	36.7	8,894	46.2	11,184	39.4	9,468	51.9	12,454					
58	37.5	8,912	47.2	11,219	39.9	9,384	53.2	12,503					
59	38.3	8,929	48.3	11,252	40.4	9,302	54.4	12,548					
60	39.1	8,945	49.4	11,282	40.8	9,223	55.7	12,590					
61	39.5	8,870	50.8	11,415	41.6	9,219	56.8	12,599					
62	39.9	8,798	52.3	11,543	42.3	9,215	57.9	12,607					
63	40.3	8,728	53.8	11,665	43.0	9,211	58.9	12,613					
64	40.7	8,660	55.3	11,783	43.8	9,207	60.0	12,619					
65	41.0	8,593	56.8	11,896	44.5	9,202	61.1	12,624					
66	41.8	8,614	58.0	11,939	45.1	9,164	62.5	12,719					
67	42.6	8,633	59.2	11,980	45.6	9,127	64.0	12,810					
68	43.4	8,652	60.3	12,019	46.1	9,091	65.5	12,899					
69	44.2	8,670	61.5	12,056	46.7	9,056	66.9	12,984					
70	45.0	8,686	62.7	12,092	47.2	9,021	68.4	13,066					
71	45.8	8,693	63.7	12,111	47.9	9,019	70.0	13,168					
72	46.5	8,700	64.5	12,067	48.6	9,016	70.6	13,105					
73	47.2	8,706	65.2	12,024	49.3	9,014	71.3	13,043					
74	47.9	8,712	65.9	11,982	50.0	9,011	72.0	12,983					
75	48.6	8,717	68.0	12,179	50.7	9,008	76.2	13,542					
76	49.1	8,673	69.2	12,226	51.3	8,984	77.8	13,638					
77	49.5	8,629	70.4	12,270	51.8	8,960	79.4	13,731					
78	49.9	8,587	71.6	12,314	52.4	8,936	81.0	13,821					
79	50.4	8,545	72.8	12,356	53.0	8,913	82.6	13,908					
80	50.8	8,505	74.0	12,396	53.5	8,891	84.3	13,993					
81	51.4	8,493	75.4	12,471	54.2	8,896	85.9	14,092					
82	52.0	8,482	76.8	12,543	54.9	8,902	87.5	14,188					
83	52.5	8,471	78.2	12,613	55.6	8,908	89.2	14,283					
84	53.1	8,460	79.6	12,681	56.3	8,914	90.8	14,375					
85	53.7	8,449	81.0	12,748	57.0	8,919	92.4	14,465					
86	54.3	8,441	82.5	12,833	57.5	8,898	94.1	14,564					
87	54.9	8,433	84.0	12,916	58.0	8,877	95.8	14,660					
88	55.5	8,425	85.6	12,997	58.5	8,856	97.4	14,755					
89	56.0	8,417	87.1	13,076	59.0	8,836	98.7	14,786					
90	56.6	8,409	88.6	13,154	59.5	8,817	98.7	14,602					
91	57.3	8,411	89.7	13,236	60.1	8,815	98.7	14,429					
92	57.9	8,414	89.7	13,080	60.8	8,813	98.7	14,260					
93	58.6	8,416	89.7	12,928	61.4	8,811	98.7	14,094					
94	59.2	8,418	89.7	12,779	62.1	8,809	98.7	13,932					
95	59.8	8,420	89.7	12,634	62.7	8,808	98.7	13,773					

Table TDA-5. Ranges for turbine operation within 1% of best efficiency at The Dalles Dam.

Note: Tables is based on information provided by HDC in 2001 and 2002(Table TDA-5 revised, 2006).

oil	l pa	ttern	s ha	ve be	en r	efin	ed (().2 a	nd ().7 t	foot	incr	eme						gate		nter	t, wl				penings in t	ne control roo	l. Refinen	nent was sto	opped
		1		1			Ì	1	1	1	1												the requ							
										Die	cha		he I			Dot	tor	10												
							1	Γ		Dis	Cha	ige i	Jist	ibu	tion	Pat	len	15								40% Spill				
						-					ay N							4.0						Total	Total	Total	Range of		Range of	<u> </u>
	2	3	4	5	6	7	8 V	9 ertic			12 ope				16	17	18	19	20	21	22	23	counts	Feet (ft)	Spill (cfs)	River cfs	Low	High	High	Low
						4	4						, (/									44	8	12,000	62,000	62,000		19.4%	
						5 5	5																49 54	9 10	13,500 15,000	63,500 65,000	62,750 64,250		21.5%	
						6	6							_		_							58	10	16,500	66,500	65,750		25.1%	
						6	6																63	12	18,000	68,000	67,250		26.8%	
						7	7																68 73	13 14	19,500 21,000	69,500 71,000	68,750 70,250		28.4%	
						8	8																78	15	22,500	72,500	71,750	73,250	31.4%	30.7
						8	8																82 87	16 17	24,000 25,500	74,000 75,500	73,250 74,750		32.8%	
						9	9						_										92	18	27,000	77,000	76,250	77,750	35.4%	34.7
						10	10																96	19	28,500	78,500	77,750		36.7%	36.0
						10	10								_								101 105	20 21	30,000 31,500	80,000 81,500	79,250 80,750		37.9%	37.2
						11	11																110	22	33,000	83,000	82,250	83,750	40.1%	39.4
						12	12																114	23 24	34,500 36,000	84,500 90,000	83,750 87,250		41.2%	
		4	4	4	4	4	4																44	24	36,000	90,000	90,000		40.0%	
		4	4	4	4	4	4										_						46	25.2	37,800	94,500	92,250		41.0%	
	4	5 4	5	5 4	5	5	5	\vdash			-			_		_			-	-	-		49 44	27 28	40,500 42,000	101,250 105,000	97,875 103,125	103,125	41.4%	39.3 39.0
	4	4	4	4	4	4	4																46	29.4	44,100	110,250	107,625	114,188	41.0%	38.6
	5	5	5	5 4	5	5	5	\vdash			-						_		-	-			49 44	31.5 32	47,250 48,000	118,125 120,000	114,188 119,063		41.4%	39.0 39.0
2	4	4	4	4	4	4	4	L															46	33.6	50,400	126,000	123,000	130,500	41.0%	38.6
i	5	5 5	5 5	5 5	5 5	5 5	5																49 51	36 37.6	54,000 56,400	135,000 141,000	130,500 138,000		41.4%	
	5	5	5	5	5	5	5																54	40	60,000	150,000	145,500		40.9%	39.2
	5	5	5	5	5	5	5																56	41.6	62,400	156,000	153,000		40.8%	38.9
i	6	6	6 6	6	6	6	6 6																58 60	44 45.6	66,000 68,400	165,000 171,000	160,500 168,000		41.1%	
	6	6	6	6	6	6	6																63	48	72,000	180,000	175,500	183,000	41.0%	39.3
	6	6 7	6 7	6 7	6 7	6 7	6 7																65 68	49.6 52	74,400 78,000	186,000 195,000	183,000		40.7%	39.1 39.4
,	7	7	7	7	7	7	7																70	53.6	80,400	201,000	198,000		40.6%	
2	7	7 7	7 7	7 7	7 7	7 7	7																73 75	56 57.6	84,000 86,400	210,000 216,000	205,500 213,000		40.9%	39.4 39.2
5	8	8	8	8	8	8	8																78	60	90,000	210,000	213,000		40.8%	39.5
7	8	8		8	8	8	8																80	61.6	92,400	231,000	228,000	-	40.5%	
2	8	8	8	8	8	8	8 8																82 84	64 65.6	96,000 98,400	240,000 246,000	235,500 243,000		40.8%	39.5 39.3
5	9	9	9	9	9	9	9																87	68	102,000	255,000	250,500	258,000	40.7%	39.5
7	9	9 9	9 9	9 9	9	9	9 9																89 92	69.6 72	104,400	261,000 270,000	258,000 265,500		40.5%	39.3 39.6
2	9	9	9	9	9	9	9																94	73.6	110,400	276,000	273,000	280,500	40.4%	39.4
	10 10	10 10		10 10	10 10	10	10 10																96 101	76 80	114,000 120,000	285,000 300,000	280,500 292,500	,	40.6%	39.0 39.0
'	11	11		11	11	11	11																101	84	126,000	315,000	307,500		41.0%	
	11	11		11	11	11	11																110	88	132,000	330,000	322,500		40.9%	
	12	12 12	12 12	12 12	12 12	12 12	12			-			_										114	92 96	138,000 144,000	345,000 360,000	337,500 352,500		40.9%	
	13	13	13	13	13	13	13																123	100	150,000	375,000	367,500	382,500	40.8%	
	13 14	13 14		13 14	13 14	13 14																	128 132	104 108	156,000 162,000	390,000 405,000	382,500 397,500		40.8%	
	14	14	14	14	14	14	14																132	112	168,000	420,000	412,500	-	40.3%	
	14	14		14	14	14		12			_						_		_					124	186,000 198,000	456,000 468,000				_
	14 14	14 14		14 14	14 14	12 12		12 12	12		-			_		_				-				132 144	216,000	468,000 486,000				
	14	14	14	14	14	12	12				12	10												156	234,000	504,000]			
	14 14	14 14		14 14	14 14	12 12					12 12		12				_		-	-	\vdash			168 180	252,000 270,000	522,000 540,000				
	14	14	14	14	14	12	12	12	12	12	12	12	12											192	288,000	558,000				
	14 14	14 14		14 14	14 14	12 12					12				12 12	12	_		-	-	$\left \right $			204 216	306,000 324,000	576,000 594,000	Starting to ex	ceed now	erhouse	
	14	14	14	14	14	12	12	12	12	12	12	12	12	12	12	12								228	342,000	612,000	capacity and			
	14 14	14 14		14 14	14 14	12 12	12				12 12		12 12	12 12	12 12		12	12 12	12					240 252	360,000 378,000	630,000 648,000	exceed 40%			
	14	14	14	14	14	12	12	12	12	12	12	12	12	12	12	12	12	12	12					252	396,000	648,000 666,000				
	14	14			14	12					12									12		-		276	414,000	684,000				
	14 14	14 14		14 14	14 14	12 14					12 14								12 14	12 14		6 7		282 315	423,000 472,500	693,000 742,500				
	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	7		336	504,000	774,000	1			
	16 17	16 17		16 17	16 17	16 17					16 17								16 17		16 17	8		358 379	537000 568500	807,000 838,500				
i.	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	9		402	603000	873,000				
																										or higher.	ill wall betwe	on millh-	vs 8/0 torro -	nora
																											entages withir		y5 0/9 tW0 I	nore
					able.		anc	iro -	n;11	ber	re 41.	ate	a	0.000	tie-	all-	per	tria	tor	hear		of	truoter	l or	re rope is:	51106				
																											new spill pat	terns deve	loped for us	se
	the	new	ly co	ompl	eted	spil	lwa	1.							-	-			-			-			-				-	
	, , , '										0	1 20-	0.1								-1.J		a from "	10 0 4.	11 2	ant due to 1	ne new spill pa	attorn d.	along I fa-	

Range of Total River Flow (cfs)	Total Spill (cfs) for Adjacent Range	Gate Opening in Total Feet (ft.)	Individual Gate opening (ft)	Gates
62,000 - 65,000	12,000	8	4.0	7,8
65,000 - 71,000	18,000	12	6.0	7,8
71,000 - 77,000	24,000	16	8.0	7,8
77,000 - 85,000	30,000	20	10.0	7,8
85,000 - 97,500	36,000	24	12.0	7,8
85,000 - 97,500	36,000	24	4.0	3-8
97,500 - 112,500	42,000	28	4.0	2-8
112,500 - 127,500	48,000	32	4.0	1-8
127,500 - 142,500	54,000	36	4.5	1-8
142,500 - 157,500	60,000	40	5.0	1-8
157,500 - 172,500	66,000	44	5.5	1-8
172,500 - 187,500	72,000	48	6.0	1-8
187,500 - 202,500	78,000	52	6.5	1-8
202,500 - 217,500	84,000	56	7.0	1-8
217,500 - 232,500	90,000	60	7.5	1-8
232,500 - 247,500	96,000	64	8.0	1-8
247,500 - 262,500	102,000	68	8.5	1-8
262,500 - 277,500	108,000	72	9.0	1-8
277,500 - 292,500	114,000	76	9.5	1-8
292,500 - 307,500	120,000	80	10.0	1-8
307,500 - 322,500	126,000	84	10.5	1-8
322,500 - 337,500	132,000	88	11.0	1-8
337,500 - 352,500	138,000	92	11.5	1-8
352,500 - 367,500	144,000	96	12.0	1-8
367,500 - 382,500	150,000	100	12.5	1-8
382,500 - 397,500	156,000	104	13.0	1-8
397,500 - 412,500	162,000	108	13.5	1-8
412,500 - 438,000	168,000	112	14.0	1-8

Table TDA-7. Operational Configurations at Various Flows