Estimating the effects of instream flows on the productivity of Chinook salmon

> Mark Scheuerell NOAA Northwest Fisheries Science Center

> > J. Tyrell Deweber Oregon State University

Tom Friesen Oregon Department of Fish and Wildlife

Willamette Fisheries Science Review

Acknowledgments

Model development

Eric Buhle (NMFS) Jim Thorson (NMFS)

Willamette insights

Stephanie Burchfield (NMFS) Diana Dishman (NMFS) Anne Mullan (NMFS) Jim Peterson (OSU) Rich Piaskowski (USACE)

FRAMEWORK FOR ANALYSES

Background literature

- Su Z, Peterman RL. 2012. Performance of a Bayesian state-space model of semelparous species for stock-recruitment data subject to measurement error. *Ecological Modelling* 224: 76-89
- Fleischman SJ, Catalano MJ, Clark RA, Bernard DR. 2013. An agestructured state-space stock–recruit model for Pacific salmon (Oncorhynchus spp.) *Can J Fish Aquat Sci* 70: 401-414
- Scheuerell MD, Ruff CP, Anderson JH, Beamer EM. *In revision*. Estimating density-dependent population dynamics in a variable environment with imperfect data. *J Applied Ecology*

Ricker model

 $\ln(R_t) = \ln(S_t) + \ln(a) - bS_t + w_t$

 $w_t \sim N(\phi w_{t-1}, Q)$ (Autocorrelated process errors)

Spawner-recruit model

Ricker model

$$\ln(R_t) = \ln(S_t) + \ln(a) - bS_t + cF_t + w_t$$

 $w_t \simeq N(\phi w_{t-1}, Q)$

Flow effects on productivity

Creating recruits from spawners

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	<i>S</i> ₁ —	$\rightarrow R_1$			
2	<i>S</i> ₂ —	$\rightarrow R_2$			
3	<i>S</i> ₃ —	$\rightarrow R_3$			
4	S ₄ —	$\rightarrow R_4$			
5	<i>S</i> ₅ —	$\rightarrow R_5$			
6					
7					
8					

Projecting recruits-by-age

Recruits-by-age model

Recruits-by-age = Total recruits * prop-by-age

$$N_{a,t} = R_{t-a} p_{a,t-a}$$

Projecting recruits-by-age

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	<i>S</i> ₁ —	$\rightarrow R_1$			
2			<i>p</i> _{3,1}		
3				$p_{4,1}$	
4			N _{4,3}		<i>p</i> _{5,1}
5				N _{5,4}	
6					N _{6,5}
7					
8					

Projecting recruits-by-age

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	<i>S</i> ₁	<i>R</i> ₁			
2	S ₂	<i>R</i> ₂			
3	S ₃	<i>R</i> ₃			
4	S ₄	R_4	N _{4,3}		
5	S ₅	<i>R</i> ₅	N _{5,3}	N _{5,4}	
6			N _{6,3}	N _{6,4}	N _{6,5}
7			N _{7,3}	N _{7,4}	N _{7,5}
8			N _{8,3}	N _{8,4}	N _{8,5}

Observation model for spawners

Spawners

 $S_t = N_t - H_t$

True spawners are difference between returns and harvest*

Observed spawners

 $\ln(E_t) \sim N(\ln(S_t), \sigma_s)$

Measured escapement is estimate of true spawners

*ignoring upstream mortality

Observation model for age comp

Age composition

 $O_{a,t} \equiv$ number of fish observed in age class *a* in year *t* $D_t = \mathop{a}_{a} O_{a,t} \quad \leftarrow$ Total fish aged in year *t* $N_{a,t} \equiv$ number of fish predicted in age class *a* in year *t*

$$\mathcal{P}_{a,t} = \frac{N_{a,t}}{\mathop{a}\limits^{a}} \leftarrow \text{Predicted prop. of fish in age class } a \text{ in year } t$$

 $\mathbf{O}_t \sim \text{Multinomial}(\boldsymbol{\pi}_t, D_t)$

Feedback between R & S

Year	Spawners	Recruits	Age 3	Age 4	Age 5
1	<i>S</i> ₁	<i>R</i> ₁			
2	<i>S</i> ₂	R ₂			
3	<i>S</i> ₃	<i>R</i> ₃			
4	S ₄	<i>R</i> ₄	N _{4,3}		
5	S ₅	<i>R</i> ₅	N _{5,3}	N _{5,4}	
6	S ₆	<	N _{6,3}	N _{6,4}	N _{6,5}
7			N _{7,3}	N _{7,4}	N _{7,5}
8			N _{8,3}	N _{8,4}	N _{8,5}

Applying the model to data

- All data pooled for the entire watershed
 - 1) Escapement estimates
 - 2) Harvest estimates from terminal fishery
 - 3) Age composition
- Flow covariates summarized at Salem
- Chinook salmon: 17 years (1999-2015)
- Steelhead: 45 years (1971-2015)*

FLOW COVARIATES

Lagging presumed flow effects

Examples of lagged flow effects

Life stage	Description	Time period	Time lag
Prespawn	Min of 7-day mean	Nov-Mar	brood yr
Prespawn	Median of 7-day mean	Nov-Mar	brood yr
Prespawn	Max of 7-day mean	Nov-Mar	brood yr
Rearing	Min of 7-day mean	Jul-Sep	brood yr + 1
:	:	:	•
1+ smolt	Min of 7-day mean	Apr-Jun	brood yr + 1
:	:	:	
2+ smolt	Min of 7-day mean	Feb-Apr	brood yr + 2

Model selection results

Life stage	Description	Time period	Time lag
Prespawn	Min of 7-day mean	Nov-Mar	brood yr
Prespawn	Median of 7-day mean	Nov-Mar	brood yr
Prespawn	Max of 7-day mean	Nov-Mar	brood yr
Rearing	Min of 7-day mean	Jul-Sep	brood yr + 1
:	:	•	:
1+ smolt	Min of 7-day mean	Apr-Jun	brood yr + 1
:	:	:	:
2+ smolt	Min of 7-day mean	Feb-Apr	brood yr + 2

Time series of estimated spawners

Year

Time series of estimated *R/S*

Spawner-Recruit relationships

Example: Range in spring flows

Period of yearling outmigration

~25% decrease in R/S

- Does not account for hatchery-born fish that spawn in wild, which means:
 - Underestimate of number of spawners
 - Overestimate of recruitment/spawner
- Relatively short time series (17 years)

In summary

- Some evidence for flow effects, but...
- LOTS of uncertainty in:
 - Data
 - Models
 - Parameters

Next steps

- Refine list of flow covariates
- Try to fit model with fewer years to allow for temperature effects
- Evaluate potential effects of reservoir simulations

QUESTIONS?