A decision support process to identify instream flows for the Willamette River ecosystem

J. Tyrell Deweber and James T. Peterson Oregon Cooperative Fish and Wildlife Unit

Context: Water Resource Management in the Northwest

Water allocation:

Agricultural irrigation
Increasing urbanization
Industrial use
Recreation & Tourism
Ecosystem needs

Structured Decision Making Process

Willamette Instream Flows

Purpose: Identify instream flows to sustain the river ecosystem and dependent fish, wildlife, and vegetation

• Social and economic water use considered separately

Interdisciplinary Team:

Hydrologists

- Geomorphologists
- Water quality modelers

Ecologists

Managers

Stakeholders

Decision Context

Location: Willamette River system above Willamette Falls

Time Period: April-October (conservation storage season)

Purpose: Identify instream flow needs for river ecosystem and dependent fish, wildlife and vegetation

Mostly Mainstem focused

Objectives Aspects we care about

Fisheries

- Wild Chinook salmon
- Wild Steelhead
- Native fish diversity
- Lamprey
- Mussels

By Oregon Department of Fish & Wildlife

By Dino Kanlic - Own work, CC BY-SA 4.0

Objectives Aspects we care about

Riparian plants

- Native riparian plants ightarrow
 - Black cottonwood ightarrow

Wildlife

- Western pond turtle
- Native Amphibians igodot
 - Red legged frog lacksquare

By Yathin S Krishnappa -Own work, CC BY-SA 3.0,

Objectives Aspects we care about

How are the objectives affected by river flow?

By Oregon Department of Fish & Wildlife

Integrated Conceptual Models Generic Fish Model

Integrated Conceptual Models Geomorphic Portion

Integrated Conceptual Models Water Quality Portion

Integrated Conceptual Models Biotic Portion

Structured Decision Making Process

Need a predictive model

 Requires scientific information

Structured Decision Making Process

Information Review:

- To define relationships
- Identify knowledge gaps
- Prioritize analyses

Prioritization of Initial Studies

Key Knowledge Gaps & Analyses

- How does inundation/habitat relate to flow?
 - Habitat-flow study (later this morning)
- What is juvenile Chinook habitat?
 - Analysis of juvenile habitat preferences
- How does temperature vary with flow?
 - Thermal mosaic (later this morning)
- How are Chinook and steelhead affected by flow?
 - Recruitment analysis (up next)

Structured Decision Making Process

Management alternatives are rules to guide flow management

Not perfectly controllable

Initial flow scenarios developed

Scenario list – each with specified minimum flows for the mainstem

- BiOp 2008 Biological Opinion flows
- Lower April Reduced April minimum flows
- Recession Gradual spring recession
- Lower April & Recession Reduced April & Gradual Recession
- Pre-dam low flows lower flows during summer
- Tributary tributary minimum flows only

Most scenarios: Lower minimum flows in deficit years

Initial flow scenarios developed

Scenario list BiOp

- Lower April
- Gradual Recession
- Lower April & Gradual Recession
- Pre-dam low flows
- Tributary

Realized flows are different

Habitat & Recruitment

Preliminary Results

Water Availability	Scenario	Median R/S	Total Spring Habitat	\mathbb{K}	
Wet	BiOp	1.00	345%	Increase Relative to	
	Low April	1.02	351%	12,000 cfs	
	Recession	1.00	338%	, ,	
	Low Apr Rec	1.02	341%	Credit:	
	Tributary	1.02	336%	USGS	
	Pre-dam low	0.99	345%		
Dry	BiOp	0.84	197%		
	Low April	0.84	198%		
	Recession	0.85	182%		
	Low Apr Rec	0.84	191%		
	Tributary	0.85	166%		
	Pre-dam low	0.83	197%		

Temperature Results Preliminary Results

					McKenzie
Scenario	Water	4/1-	4/15-	6/16-	Median
	Туре	5/31	6/15	9/30	Thermal
					Exposure
2011	Observed	10.5	11.6	18.6	140.3
2015	Observed	15.3	17.7	22	265.8
2015-Low April	Adequate	14.9	16.9	21.7	252.1
2015-Recession	Adequate	14.9	17.0	21.7	256.6
2015-Rec & Low April	Adequate	15.0	17.0	21.7	260.7
2015-Low April	Deficit	14.8	16.9	22.4	262.9
2015-Recession	Deficit	15.2	17.3	22.3	258.7
2015-Pre-dam low	Deficit	14.9	16.9	22.7	263.7

Credit: Rounds and Buccola, USGS

Next Steps

Instream Flows

Develop and review additional scenarios
Integrate hydrology and temperature models
Include tributary responses
Include additional ecosystem objectives:

- Native fishes, mussels, lamprey
- Native amphibians
- Native riparian plants
- Western pond turtle

Own work, CC BY-SA 3.0,

Next Steps

Instream Flows

•Identify key uncertainties:

- Fish movement responses
- Off channel habitat and flow

•Adaptive management

- Predict responses to actions
- Monitor and compare to predictions
- Learn how the system works
- Improve management

Water Allocation

Instream flows and other uses reviewed

•See Willamette Basin Review for more details

Acknowledgements

PI: Jim Peterson

Management Group – Rich Piaskowski, Anne Mullan, Stephanie Burchfield, Tom Friesen, Rachel Lovellford, Greg Taylor

SWIFT members:

Rose Wallick Stewart Rounds Norm Buccola Mark Scheuerell Tom Friesen Luke Whitman Stan Gregory Kristin Brian Bangs Tiffany Garcia Mike Adams Krista Jones Bob Naiman Rick Kepler Kathryn Warner Jordan Beamer Jodie Lemmer Cindy Bowline Daniel Turner Dave Hulse Mike Hudson Brian Posewitz

IATIONAL MARINE

Questions

Results Summary – In Progress Preliminary Results – For Illustration Only

<u>Metric</u>	<u>BiOp</u>	<u>1</u>	<u>2a</u>	<u>3a</u>	<u>7</u>	<u>8</u>	<u>Change relative to</u> <u>BiOp</u>
R/S (wet)	X	+	+	+	+	-	+ > 0.02 < -
R/S (dry)	X	0	+	0	+	-	+ > 0.02 < -
Habitat (wet)	X	+	-	0	-	0	+>2%< -
Habitat (dry)	X	0	0	-	-	0	+>2%< -
Ranks, 1= best							
Temps (adequate)		1	2	3			
Temps (deficit)		1.5	3	1.5			
Thermal expos (adequate)			1	2			
Thermal expos (deficit)		1				2	