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Snowpack drought has salmon dying in overheated

rivers
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Outline

1. Adult salmon mortality and effects on populations

2. Questionnaire to fisheries professionals: methods used
to monitor PSM

3. Patterns of PSM across the Columbia Basin
t,. Factors related to PSM in Willamette and Columbia

5. Energetics model to evaluate energetic exhaustion as a
mechanism for PSM



1. Adult mortality overview

Adult salmon freshwater mortality

Environmental conditions at start of migration
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migration prior to reaching spawning
grounds

Pre-spawn mortality (PSM): after arrival
at spawning grounds prior to
reproduction



1. Adult mortality overview

Why should we care about PSM?

Puget Sound Coho salmon 30 year projections :
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1. Adult mortality overview

Why we care about PSM

Increased PSM contributed to
collapse of Cultus Lake
Sockeye and emergency
listing
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1. Adult mortality overview

What causes salmon to die prematurely?

Direct
causes

Energetic depletion?

Contributing Density Migration Individual fish Temperature

factors (Alaska) timing (Fraser) condition (Fraser,
(Willamette) Willamette)




2. Methods questionnaire

Questionnaire: overview of PSM monitoring

37 Respondents in Columbia  PSM monitoring widespread but
12 different agencies considerable variation in data
7000 stream km surveyed collection and reporting
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2. Methods questionnaire

Questionnaire: How is PSM monitored?

Data used to estimate PSM:
 Carcasses collected on spawning grounds assessed for egg retention
e Count at dam or weir relative to redd count
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Potential biases with each method:

Carcass-based counts may miss en
route and early season mortality
Dam:Redd count estimates prone
to error associated with redd
counts, sex ratios, etc.



2. Methods questionnaire

Timing of carcass surveys important

In some populations, PSM highest ~ Carcass counts conducted

before spawning begins only during spawning
period may dramatically
Holding underestimate annual PSM
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3. PSM patterns

Sp-su Chinook PSM rates in the Columbia Basin

618 site years of carcass data .
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3. PSM patterns

Subbasin
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3. PSM patterns

Willamette Basin spring Chinook PSM

Ordered by avg. temp
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4. Factors affecting PSM

Factors affecting PSM in Willamette Basin rivers

Annual PSM 2001-2010

PSM significantly

related to:

1. Temperature

2. Percent hatchery
origin (clipped)

50% hatchery
origin

Logit (1), = Bo + B1 (Tempij) +
+ BZ(PctHatcheryij) + b; + b; + by

PSMl-j~Bin0mial(,uij,1Tij)
b;j~N (0, 0,2) random intercept stream i

7 day Max Temp b;~N(0,0,?) random intercept year j

b;j~N(0, 0},2) individual-level random
intercept



4. Factors affecting PSM

Factors affecting PSM in Willamette Basin rivers

PSM significantly

related to:

1. Temperature

2. Percent hatchery
origin (clipped)

50% hatchery
origin

Logit (1), = Bo + B1 (Tempij) +
+ BZ(PctHatcheryij) + b; + bj + bij
PSM;j~Binomial (u;;, m;;)
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4. Factors affecting PSM

Factors affecting Chinook PSM in the CRB

Probability of PSM:

e Increased with temperature
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Temperature decreases with elevation

Logit (u); = Bo + By (Temp,) + B, (Origingj)
+ 83(Lengthijk) +bj + by + €

Mortality; jx ~Bernoulli(pjy)

bj~N(0,0,*) random intercept for populationj

Preliminary results, subject to revision R = pliforyear K



4. Factors affecting PSM

Factors affecting Chinook PSM in the CRB

Hatchery
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Probability of PSM:
e Increased with temperature

e Higher for hatchery fish

Density increases with percent hatchery origin

Preliminary results, subject to revision

Logit (u); = Bo + By (Temp,) + B, (Origingj)
+ 83(Lengthijk) +bj + by + €
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4. Factors affecting PSM

Factors affecting Chinook PSM in the CRB

Probability of PSM:

’ e Increased with temperature
atchery

e Higher for hatchery fish
w e Increased with length
50 80 Migration timing sometimes
Fork Length (cm) related to size
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Mortality; jx ~Bernoulli(pjy)

bj~N(0,0,*) random intercept for populationj

Preliminary results, subject to revision R = pliforyear K



4. Factors affecting PSM

Factors affecting Chinook PSM in the CRB

: Entiat Hatchery _ Umatilla
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Probability of PSM:

e Increased with temperature
e Higher for hatchery fish

e Increased with length

e Varied among rivers



5. Bioenergetics model

Bioenergetics model system

Goals:

Develop model to predict energy use
during migration, & holding different
environmental conditions

Test theory that energy exhaustion
could cause PSM

Summer-run Chinook salmon

South Fork Salmon River, Idaho
Migration: >9oo km, 1100 m elevation
Holding: 1-2 months




5. Bioenergetics model

Spring Chinook energy budget

(a)

Bonneville Dam

Spawning

grounds
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+ gonad development ~14%

— Migration ~46%

Energetic depletion did
not appear to be the
primary cause of PSM,;

— Holding ~25% however a few PSMs had

energy similar to post-

Spawning ~7% spawn mortalities

Bowerman et al. 2017 JFB



5. Bioenergetics model

Individual-based model to predict travel time

Impounded corridor

2. Fishway 3. Reservoir

1. Tailrace Flow direction
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Travel time a function of:

e Discharge

* Watertemperature

e Time of day (Impounded)

e Day of year (Snake-salmon)

Tremendous variability in travel time ~ ° Individual variability

e Within each section

e Overall migration Crozier et al. In prep.



5. Bioenergetics model

Predict holding time and energy use

Estimated spawn date
255 .
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5. Bioenergetics model

Model results: Energy remaining

Arrival at spawning grounds Fish that migrated later
' had more energy after
VIRl migration and before

® Observed 2002 Spawning
x Observed 2014

Early migrators were
more likely to fall
below proposed
threshold to sustain life
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Crossin et al. 2004
Bowerman et al. 2017

preliminary results, subject to revision



5. Bioenergetics model

Model results: climate change predictions

Energy density available at spawn date

— current conditions
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Late migrators had more
energy available

Late migration limited by
high water temps in
migratory corridor



5. Bioenergetics model
Model results: climate change predictions

Energy density available at spawn date
Late migrators had more

energy available

current conditions
2015 conditions (climate change)
2015 migration corridor, 2040

predictions at spawning grounds : Late migration limited by
| high water temps in
migratory corridor

Under warmer conditions,
Threshold model predicted energy-
| depletion for early migrants
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5. Bioenergetics model
Model results: climate change predictions

Energy density available at spawn date
Late migrators had more

energy available

current conditions
2015 conditions (climate change)
2015 migration corridor, 2040

predictions at spawning grounds Late migration limited by
high water temps in
migratory corridor

Under warmer conditions,
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5. Bioenergetics model
Model results: climate change predictions

Energy density available at spawn date
Late migrators had more

energy available
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2015 conditions (climate change)
2015 migration corridor, 2040

predictions at spawning grounds : Late migration limited by
| high water temps in
migratory corridor

Under warmer conditions,
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5. Bioenergetics model
Model results: climate change predictions

Energy density available at spawn date
Late migrators had more

energy available

current conditions
2015 conditions (climate change)
2015 migration corridor, 2040

predictions at spawning grounds : Late migration limited by
' high water temps in
migratory corridor

Under warmer conditions,
Threshold model predicted energy-
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Summary

* High PSM can lead to population declines |

* Need for systematic monitoring
* Variability in PSM among locations and years

* PSM increased with stream temperature

* Probability of PSM higher for hatchery fish, larger fish

* Additional factors not included here, interactions among factors
* Potential for energetic depletion to cause PSM

* Energy expenditure greater for early migrating fish/high temps

* Need to better understand PSM in light of climate change
predictions
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