CHAPTER 4: Double-crested Cormorant Management in the Columbia River Estuary

Authors: Timothy J. Lawes¹, Kirsten S. Bixler¹, Daniel D. Roby¹, Donald E. Lyons¹, Ken Collis², Allen F. Evans², Adam Peck-Richardson¹, Brad Cramer², Yasuko Suzuki¹, Jessica Y. Adkins¹, and Quinn Payton²

Double-crested Cormorant Colony Size on East Sand Island

	Pre-management	Phase I	Phase II	
Salmonid ESU/DPS	2003–2014	2015–2017	2018	
UCR Steelhead	6.3% (5.5–7.2%)	5.8% (4.5–8.1%)	0.7% (0.4–1.4%)*	
UCR Sp Chinook Salmon	3.8% (3.2–4.6%)	4.1% (3.2–5.8%)	0.6% (0.3–1.2%)*	
SR Steelhead	7.2% (6.3–8.5%)	6.8% (5.3–9.4%)	0.5% (0.3–0.9%)*	
SR Sp/Su Chinook Salmon	4.6% (4.1–5.3%)	6.8% (5.3–9.4%)	0.5% (0.3–0.8%)*	
SR Fall Chinook Salmon	2.7% (2.3–3.2%)	3.7% (2.6–5.4%)	0.9% (0.5–1.6%)*	
SR Sockeye Salmon	4.2% (3.3–5.3%)	2.4% (1.4–4.0%)	0.9% (0.4–1.9%)*	
MCR Steelhead	7.5% (6.3–9.3%)	5.4% (4.0–7.0%)	0.4% (0.1–1.0%)*	
UWR Sp Chinook Salmon	1.8% (1.3–2.6%)	1.4% (0.6–2.9%)	NA	
LCR Steelhead	5.4% (4.5–6.3%)	5.0% (3.7–6.9%)	0.6% (0.3–1.0%)*	
LCR Chinook Salmon	27.5% (24.3–30.7%)	8.7% (6.2–12.1%)*	7.3% (4.8–11.6%)*	
LCR Coho Salmon	15.0% (12.2–18.1%)	0.2% (0.0–0.7%)*	0.3% (0.1–0.8%)*	

	Pre-management	Phase I	Phase II	
Salmonid ESU/DPS	2003–2014	2015–2017	2018	
UCR Steelhead	6.3% (5.5–7.2%)	5.8% (4.5–8.1%)	0.7% (0.4–1.4%)*	
UCR Sp Chinook Salmon	3.8% (3.2–4.6%)	4.1% (3.2–5.8%)	0.6% (0.3–1.2%)*	
SR Steelhead	7.2% (6.3–8.5%)	6.8% (5.3–9.4%)	0.5% (0.3–0.9%)*	
SR Sp/Su Chinook Salmon	4.6% (4.1–5.3%)	6.8% (5.3–9.4%)	0.5% (0.3–0.8%)*	
SR Fall Chinook Salmon	2.7% (2.3–3.2%)	3.7% (2.6–5.4%)	0.9% (0.5–1.6%)*	
SR Sockeye Salmon	4.2% (3.3–5.3%)	2.4% (1.4–4.0%)	0.9% (0.4–1.9%)*	
MCR Steelhead	7.5% (6.3–9.3%)	5.4% (4.0–7.0%)	0.4% (0.1–1.0%)*	
UWR Sp Chinook Salmon	1.8% (1.3–2.6%)	1.4% (0.6–2.9%)	NA	
LCR Steelhead	5.4% (4.5–6.3%)	5.0% (3.7–6.9%)	0.6% (0.3–1.0%)*	
LCR Chinook Salmon	<mark>27.5% (24.3–30.7%)</mark>	8.7% (6.2–12.1%)*	7.3% (4.8–11.6%)*	
LCR Coho Salmon	<mark>15.0% (12.2–18.1%)</mark>	0.2% (0.0–0.7%)*	0.3% (0.1–0.8%)*	

	Pre-management	Phase I	Phase II	
Salmonid ESU/DPS	2003–2014	2015–2017	2018	
UCR Steelhead	6.3% (5.5–7.2%)	5.8% (4.5–8.1%)	0.7% (0.4–1.4%)*	
UCR Sp Chinook Salmon	3.8% (3.2–4.6%)	4.1% (3.2–5.8%)	0.6% (0.3–1.2%)*	
SR Steelhead	7.2% (6.3–8.5%)	6.8% (5.3–9.4%)	0.5% (0.3–0.9%)*	
SR Sp/Su Chinook Salmon	4.6% (4.1–5.3%)	6.8% (5.3–9.4%)	0.5% (0.3–0.8%)*	
SR Fall Chinook Salmon	2.7% (2.3–3.2%)	3.7% (2.6–5.4%)	0.9% (0.5–1.6%)*	
SR Sockeye Salmon	4.2% (3.3–5.3%)	2.4% (1.4–4.0%)	0.9% (0.4–1.9%)*	
MCR Steelhead	7.5% (6.3–9.3%)	5.4% (4.0–7.0%)	0.4% (0.1–1.0%)*	
UWR Sp Chinook Salmon	1.8% (1.3–2.6%)	1.4% (0.6–2.9%)	NA	
LCR Steelhead	5.4% (4.5–6.3%)	5.0% (3.7–6.9%)	0.6% (0.3–1.0%)*	
LCR Chinook Salmon	<mark>27.5% (24.3–30.7%)</mark>	<mark>8.7% (6.2–12.1%)*</mark>	<mark>7.3% (4.8–11.6%)*</mark>	
LCR Coho Salmon	15.0% (12.2–18.1%)	0.2% (0.0–0.7%)*	0.3% (0.1–0.8%)*	

	Pre-management	Phase I	Phase II	
Salmonid ESU/DPS	2003–2014	2015–2017	2018	
UCR Steelhead	6.3% (5.5–7.2%)	5.8% (4.5–8.1%)	0.7% (0.4–1.4%)*	
UCR Sp Chinook Salmon	3.8% (3.2–4.6%)	4.1% (3.2–5.8%)	0.6% (0.3–1.2%)*	
SR Steelhead	7.2% (6.3–8.5%)	6.8% (5.3–9.4%)	0.5% (0.3–0.9%)*	
SR Sp/Su Chinook Salmon	4.6% (4.1–5.3%)	6.8% (5.3–9.4%)	0.5% (0.3–0.8%)*	
SR Fall Chinook Salmon	2.7% (2.3–3.2%)	3.7% (2.6–5.4%)	0.9% (0.5–1.6%)*	
SR Sockeye Salmon	4.2% (3.3–5.3%)	2.4% (1.4–4.0%)	0.9% (0.4–1.9%)*	
MCR Steelhead	7.5% (6.3–9.3%)	5.4% (4.0–7.0%)	0.4% (0.1–1.0%)*	
UWR Sp Chinook Salmon	1.8% (1.3–2.6%)	1.4% (0.6–2.9%)	NA	
LCR Steelhead	5.4% (4.5–6.3%)	5.0% (3.7–6.9%)	0.6% (0.3–1.0%)*	
LCR Chinook Salmon	<mark>27.5% (24.3–30.7%)</mark>	<mark>8.7% (6.2–12.1%)*</mark>	<mark>7.3% (4.8–11.6%)*</mark>	
LCR Coho Salmon	<mark>15.0% (12.2–18.1%)</mark>	<mark>0.2% (0.0–0.7%)*</mark>	<mark>0.3% (0.1–0.8%)*</mark>	

Double-crested Cormorant Colony Size on the Astoria-Megler Bridge

 The objective of the Cormorant Management Plan to limit predation on salmonid smolts by reducing the size of the double-crested cormorant colony on East Sand Island to no more than 5,380–5,939 breeding pairs during Phase I of the Plan was achieved earlier than expected

- The objective of the *Cormorant Management Plan* to limit predation on salmonid smolts by reducing the size of the double-crested cormorant colony on East Sand Island to no more than 5,380–5,939 breeding pairs during Phase I of the Plan was achieved earlier than expected
- Following the habitat modification prescribed in Phase II of the *Cormorant Management Plan*, the objective of limiting the size of the East Sand Island cormorant colony to less than 5,380–5,939 breeding pairs was achieved

- The objective of the *Cormorant Management Plan* to limit predation on salmonid smolts by reducing the size of the double-crested cormorant colony on East Sand Island to no more than 5,380–5,939 breeding pairs during Phase I of the Plan was achieved earlier than expected
- Following the habitat modification prescribed in Phase II of the *Cormorant Management Plan*, the objective of limiting the size of the East Sand Island cormorant colony to less than 5,380–5,939 breeding pairs was achieved
- Consumption of juvenile salmonids by double-crested cormorants nesting on East Sand Island was effectively eliminated as East Sand Island appears to have recently been abandoned as a cormorant nesting site
 - Improvements to smolt survival likely somewhat offset by double-crested cormorants nesting on the Astoria-Megler Bridge

- The objective of the *Cormorant Management Plan* to limit predation on salmonid smolts by reducing the size of the double-crested cormorant colony on East Sand Island to no more than 5,380–5,939 breeding pairs during Phase I of the Plan was achieved earlier than expected
- Following the habitat modification prescribed in Phase II of the *Cormorant Management Plan*, the objective of limiting the size of the East Sand Island cormorant colony to less than 5,380–5,939 breeding pairs was achieved
- Consumption of juvenile salmonids by double-crested cormorants nesting on East Sand Island was effectively eliminated as East Sand Island appears to have recently been abandoned as a cormorant nesting site
 - Improvements to smolt survival likely somewhat offset by double-crested cormorants nesting on the Astoria-Megler Bridge
- The *Cormorant Management Plan* has been completed without the Pacific Flyway population of double-crested cormorants declining below levels anticipated by the U.S. Fish and Wildlife Service

 In order to fully achieve the objectives of the Cormorant Management Plan we recommend:

- In order to fully achieve the objectives of the *Cormorant Management Plan* we recommend:
 - Monitoring the size and smolt predation rates at other double-crested cormorant colonies in the Columbia River estuary (e.g., Astoria-Megler Bridge) to ensure cormorant predation rates in the estuary do not exceed acceptable levels

- In order to fully achieve the objectives of the *Cormorant Management Plan* we recommend:
 - Monitoring the size and smolt predation rates at other double-crested cormorant colonies in the Columbia River estuary (e.g., Astoria-Megler Bridge) to ensure cormorant predation rates in the estuary do not exceed acceptable levels
 - Dissuading double-crested cormorants from nesting on the Astoria-Megler Bridge
 - Per capita smolt predation rates are likely higher than for cormorants nesting on East Sand Island
 - Guano accelerates corrosion of bridge structures

- In order to fully achieve the objectives of the *Cormorant Management Plan* we recommend:
 - Monitoring the size and smolt predation rates at other double-crested cormorant colonies in the Columbia River estuary (e.g., Astoria-Megler Bridge) to ensure cormorant predation rates in the estuary do not exceed acceptable levels
 - Dissuading double-crested cormorants from nesting on the Astoria-Megler Bridge
 - Per capita smolt predation rates are likely higher than for cormorants nesting on East Sand Island
 - Guano accelerates corrosion of bridge structures
 - Restoring a cormorant colony on East Sand Island of no more than 5,380–5,939 breeding pairs using demonstrated effective methods (i.e., nesting substrate enhancement, social attraction, close colony monitoring)

- In order to fully achieve the objectives of the *Cormorant Management Plan* we recommend:
 - Monitoring the size and smolt predation rates at other double-crested cormorant colonies in the Columbia River estuary (e.g., Astoria-Megler Bridge) to ensure cormorant predation rates in the estuary do not exceed acceptable levels
 - Dissuading double-crested cormorants from nesting on the Astoria-Megler Bridge
 - Per capita smolt predation rates are likely higher than for cormorants nesting on East Sand Island
 - Guano accelerates corrosion of bridge structures
 - Restoring a cormorant colony on East Sand Island of no more than 5,380–5,939 breeding pairs using demonstrated effective methods (i.e., nesting substrate enhancement, social attraction, close colony monitoring)
 - Preventing formation of other breeding colonies of double-crested cormorants in the Columbia River estuary, especially upstream of East Sand Island

- In order to fully achieve the objectives of the *Cormorant Management Plan* we recommend:
 - Monitoring the size and smolt predation rates at other double-crested cormorant colonies in the Columbia River estuary (e.g., Astoria-Megler Bridge) to ensure cormorant predation rates in the estuary do not exceed acceptable levels
 - Dissuading double-crested cormorants from nesting on the Astoria-Megler Bridge
 - Per capita smolt predation rates are likely higher than for cormorants nesting on East Sand Island
 - Guano accelerates corrosion of bridge structures
 - Restoring a cormorant colony on East Sand Island of no more than 5,380–5,939 breeding pairs using demonstrated effective methods (i.e., nesting substrate enhancement, social attraction, close colony monitoring)
 - Preventing formation of other breeding colonies of double-crested cormorants in the Columbia River estuary, especially upstream of East Sand Island
 - Continuing to monitor the Pacific Flyway population of double-crested cormorants for early detection of major unanticipated population declines

Back-up Slides

Table 10. Maximum allowable lethal take authorized under permit and actual take of double-crested cormorant adults, double-crested cormorant nests oiled, and double-crested cormorant eggs destroyed as part of implementation of the *Double-crested Cormorant Management Plan*.

	Maximum	n Permittec	Take	Actual Tak	e (% of permitted take)	
Year	<u>Adults</u>	<u>Nests</u>	Eggs	<u>Adults</u>	<u>Nests</u>	Eggs
2015	3,489	5,879		2,346 (67%)	5,089 (87%)	
2016	3,114	5,247		2,982 (96%)	1,092 (21%)	
2017	2,408	4,058		248 (10%)	0 (0%)	
2018	0	0	500	NA	NA	3 (0.6%)
Total	9,011	15,184	500	5,576	6,181	3

Percent Salmonids

Range (1999-2013) Average (1999-2005) Average (2006-2013)

Percent of Prey Biomass

Range (1998-2013)

Average (1998-2013)

Percent of Prey Biomass

Table 4.1. Proportional breakdown (by frequency) of salmonids by species/age-class in stomachs of double-crested cormorants collected near East Sand Island in the Columbia River estuary during 2000 – 2013.

	Time Period				
Species/Age-class	3/27–5/7	5/8–6/4	6/5–7/2	7/3–7/30	
Sub-yearling Chinook	0.03	0.18	0.87	0.91	
Yearling Chinook	0.10	0.19	0.03	0.00	
Coho Salmon	0.54	0.32	0.03	0.01	
Sockeye Salmon	0.00	0.02	0.00	0.00	
Steelhead	0.33	0.29	0.07	0.08	
# of Identified Juvenile Salmonids	68	94	35	25	

Salmonid Consumption

—Average (1999-2013)

Former Cormorant Nesting Area on East Sand Island

