KOOTENAI BURBOT RESTORATION PROGRAM

BURBOT ABUNDANCE

RESEARCH OBJECTIVES

- AGE SPECIFIC SURVIVAL

- EFFECTS OF STOCKING LOCATION, SIZE, AND AGE AT RELEASE

- JUVENILE AND ADULT ABUNDANCE

- MOVEMENT AND DISTRIBUTION

- RECRUITMENT BOTTLENECKS

BURBOT

PARENTAL BASED TAGGING (PBT)

FAMILY SEPARATION IN HATCHERY

BURBOT RECRUITMENT

BURBOT RECRUITMENT

BURBOT ABUNDANCE

BURBOT ADULT ABUNDANCE

HISTORICAL BURBOT FISHERY

BURBOT FISHERY – REOPENED IN 2019

BURBOT FISHERY – REOPENED IN 2019

BURBOT CONCLUSIONS

Thanks to Cooperators: KTOI BCMFLNRO MFWP USFWS USGS USACE Steve Dinsmore – Iowa State University IDFG Staff NWPCC BPA

 Rebuild population abundance
Experimental early life stage releases to investigate habitat dynamics

When and why do the recruitment bottlenecks occur?

FEB MAR APR MAY JUN JUL AUG SEP OCT

Chronology of Burbot Early Life Stages

FEB MAR APR MAY JUN JUL AUG SEP OCT

Chronology of Burbot Early Life Stages FEB MAR APR MAY JUN JUL AUG SEP OCT Spawning Adults ~ broadcast spawners ~ timing varies (Dec. - May) ~ age @ maturation varies (3-7 years) Fertilized Eggs ~ drift in water column temparaily Sub-Adult Stage ~ lodge in substrate interstices ~ nocturnal, solitary, benthic ~ optimum temperature development (0-4 C) ~ diet shifts from insects to fish Larval Stage Age 0 stage 🛛 🔫 ~ hatching size (3-4 mm) ~ approximately 40mm begin exogenous feeding within days photo-negative, nocturnal, passively drift in water column solitary, benthic ~ shift to nearshore habitats at > 15 mm) ~ photo-positive, diurnal, schooling

Chronology of Burbot Early Life Stages

FEB MAR APR MAY JUN JUL AUG SEP OCT

Guess how many larvae are in this pic?

Chronology of Burbot Early Life Stages

FEB MAR APR MAY JUN JUL AUG SEP OCT

✓ Estimated 50,000 2-8 year olds.

Are adults maturing, producing viable gametes, and spawning?

FEB MAR APR MAY JUN JUL AUG SEP OCT

Are adults maturing, producing viable gametes, and spawning?

FEB MAR APR MAY JUN JUL AUG SEP OCT

Picture of Kootenai Tribe of Idaho staff releasing larval burbot

Picture of Kootenai Tribe of Idaho staff releasing larval burbot

Habitat Project – Floodplain Reconnect

Changes in Average River Surface Temperature

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month

Combination of actions to better match ecosystem function and Burbot Life Stage Needs

4

Koocanusa Reservoir and Kootenai River Seasonal Isothermy

Greg Hoffman Fishery Biologist

U.S. Army Corps of Engineers Seattle District / Libby Dam / Kootenai River

US Army Corps of Engineers BUILDING STRONG®

Koocanusa Reservoir Temperatures Water Year 2020

Koocanusa Reservoir Temperatures Water Year 2021

LIBBY DAM WINTER DRAWDOWN OPERATIONS 2021

3 February 2021 **TMT** Meeting

Jon Moen **USACE** Seattle District

"The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation."

- April-August inflow forecast for Libby Dam is 5.98 million acre-feet (MAF) (102% avg)
- This is the preliminary forecast for February. Forecast will be finalized 3 February 2021.
- The end of February elevation target is set at 2406.2 ft.

- Currently the elevation of Lake Koocanusa is 2407.5 ft and Libby Dam outflow is 4 kcfs.
- Expected Libby Dam operation is to maintain outflow at 4 kcfs minimums through February to meet the end of month target.
- Projected operation may be subject to change if unexpected conditions arise.

