DEPARTMENT OF THE ARMY CORPS OF ENGINEERS, NORTHWESTERN DIVISION PO BOX 2870 PORTLAND OR 97208-2870 March 2017 # **2017 Fish Operations Plan** #### **INTRODUCTION** The 2017 Fish Operations Plan (FOP) describes the U.S. Army Corps of Engineers' (Corps) planned operations for fish passage at its mainstem Federal Columbia River Power System (FCRPS) dams during the 2017 fish migration season, generally April through August. The 2017 FOP is consistent with the spill operations and the adaptive management provisions in the 2014 NOAA Fisheries FCRPS Supplemental Biological Opinion (2014 Supplemental BiOp)¹ and the Corps' Record of Consultation and Statement of Decision (ROCASOD) adopting the project operations contained in the 2014 Supplemental BiOp and the Columbia Basin Fish Accords (Accords). The 2017 FOP incorporates planned project operational adjustments necessary to conduct essential research to evaluate fish passage features during the 2017 migration season. Other FCRPS water management actions and project operations not specifically addressed in this document shall be consistent with the 2014 Supplemental BiOp and other guiding operative documents, including the 2017 Water Management Plan (WMP), seasonal WMP updates, and the 2017 Fish Passage Plan (FPP). Operations described herein are consistent with the 2014 Supplemental BiOp, including adjustments to address in-season developments through discussion and coordination with the regional sovereigns as provided for in the 2014 Supplemental BiOp. The following sections describe factors that influence management of fish operations during various runoff conditions, including: management of spill for fish passage, spillway operations, minimum generation requirements, operations under low flow conditions, navigation safety, juvenile fish transportation operations, specified operations for fish at each mainstem project, protocols for fish protection measures related to operational emergencies, coordination with regional entities, and monthly reporting. # GENERAL CONSIDERATIONS FOR FISH OPERATIONS For planning purposes, the Corps' 2017 FOP assumes average runoff conditions. Actual runoff conditions can vary in timing and shape and may be higher or lower than average in any given year. In addition, environmental conditions can cause river temperatures to exceed levels that are safe for fish, as was observed in 2015. To accommodate these situations as they arise, adjustments in fish transportation and/or spill operations (spill levels, spill caps, and spill patterns) will be adaptively managed in-season. These in- ¹ The 2014 Supplemental BiOp considered the Action Agencies' 2014-2018 Implementation Plan (2014-2018 IP) and incorporates both the 2008 NOAA BiOp and the 2010 Supplemental BiOp. References to the 2014 Supplemental BiOp also include, as appropriate, references to prior BiOps. season changes will be coordinated through the Technical Management Team (TMT) and/or other appropriate regional forums, to avoid or minimize adverse impacts to juvenile and/or adult fish passage conditions, navigation safety concerns, or to accommodate powerhouse and/or transmission system constraints. Actual spill levels may be adaptively managed to accommodate fish research or other conditions and will be coordinated through the TMT and other appropriate regional forums. # Management of Spill for Fish Passage The Corps will manage spill levels for fish passage to avoid exceeding 120% total dissolved gas (TDG) in project tailraces, and 115% TDG in the forebay of the next project downstream consistent with the current State of Washington percent TDG limits.² These limits are referred to as gas caps. The maximum project spill level that meets, but does not exceed, the gas cap is referred to as the spill cap. Gas caps are constant, whereas spill caps may vary daily depending on flow, spill operation, spill pattern, temperature, and other environmental conditions. As noted above, the spill levels presented below in Tables 2 and 3 are planned spill operations and assume average runoff conditions; however, adjustments to these spill rates may be necessary. Reasons for these adjustments may include: - 1. Low runoff conditions that may require adjustments in spill level while still meeting project minimum generation requirements. - 2. High runoff conditions where flows exceed the powerhouse hydraulic capacity with the specified spill rates. - 3. Navigation safety concerns. - 4. Generation unit and/or transmission outages that reduce the powerhouse hydraulic capacity. - 5. Power system or other emergencies that reduces powerhouse outflow. - 6. Lack of power demand resulting in an increase in spill levels. - 7. Fish emergency conditions. The Corps' Reservoir Control Center (RCC) is responsible for daily management of spill operations responsive to changing TDG conditions. In order to manage gas cap spill levels consistent with the states' TDG saturation limits, the RCC establishes the TDG spill caps for the lower Columbia and Snake River projects on a daily basis throughout the fish passage season. The resultant TDG spill caps are set to provide percent TDG saturation levels that are not expected to exceed the 120% tailrace/115% forebay TDG limits, consistent with the respective Oregon and Washington TDG waiver and criteria adjustments. _ ² The 2014 Supplemental BiOp provides: "Specific spill levels will be provided for juvenile fish passage at each project, not to exceed established TDG levels (either 110 percent TDG standard, or as modified by State water quality waivers, currently up to 115 percent TDG in the dam forebay and up to 120 percent TDG in the project tailwater...". In February 2009, the State of Oregon modified its 5-year waiver to remove the 115% forebay TDG limit, but the State of Washington did not. The Corps will continue to manage to 120% and 115% (the Washington TDG standard) in 2017. Within any given day, some hours of measured TDG levels may be higher or lower than the gas caps due to changing environmental conditions (wind, air temperature, etc.). The process of establishing daily spill caps entails reviewing existing hourly data at each dam (including flow, spill, temperature, and TDG levels) and taking into consideration a number of forecast conditions (including total river flow, powerhouse flow, wind and temperature forecast, etc.). These data are used as input variables into the System TDG (SYSTDG) model. The SYSTDG model estimates TDG levels expected several days into the future and is a tool integral to daily decision-making when establishing spill caps at individual dams. Spill caps are reviewed daily and set by RCC in the spill priority list teletype, and will be met at the projects using the individual project spill pattern(s) contained in the FPP Sections 2 through 9, that most closely corresponds to the specified spill level (i.e. may be slightly over or under the specified spill level or percent value). When river flow is greater than project powerhouse hydraulic capacity given the specified FOP spill level, or a lack of power load results in an increase in the spill level, the Corps will attempt to minimize TDG on a system-wide basis. In this case, spill caps are also developed for 122%, 125%, 127%, 130%, or 135% TDG as a means of minimizing TDG throughout the system. The Corps will initiate spill at 0001 hours, or shortly after midnight, at each of the projects on the start dates specified in the project sections below. Spill caps will be established at the specified FOP levels and will continue unless conditions require changing to maintain TDG within the upper limits of 120% in the tailwater of a dam and 115% in the forebay of the next project downstream. Unless otherwise specified, spill will transition to summer levels at 0001 hours, or shortly after midnight, at each project on the day after spring spill ends (specified in the project sections below). Operations to manage TDG will continue to be coordinated through the TMT. #### **Spillway Operations** The Action Agencies will meet the specified spill levels to the extent feasible; however, actual hourly spill levels at each dam may be slightly more or less than those specified in Tables 2 and 3 below. Actual spill levels vary depending on the precision of spill gate settings, flow variations in real time, varying project head (the elevation difference between a project's forebay and tailwater), automatic load following, and other factors. # **Operational Considerations:** • <u>Spill levels</u>: Project spill levels listed in Tables 2 and 3 coincide with specific gate settings in the FPP project spill pattern tables. Due to limits in the precision of spill gates and control devices, short term flow variations, and head changes, it is not always possible to meet the exact spill levels identified in Tables 2 and 3 or in RCC spill requests (teletypes) to specific projects. Therefore, spillway gates are opened to the gate settings identified in the FPP project spill pattern tables to provide spill levels that are the closest to the prescribed FOP spill levels. • Spill percentages: Spill percentages are considered target spill levels. The project control room operator and BPA duty scheduler calculate spill levels to attempt to be within ±1% of the target percentage for the following hour (or more than ±1% at The Dalles and Little Goose dams as specified in FPP Sections 3 and 8 spill pattern tables). Prescribed or specified spill percentages in Tables 2 and 3 may not always be attained due to low flow conditions and minimum generation requirements (Table 1), high flow conditions, TDG cap limitations, temporary spill curtailment for navigation safety, and other unavoidable circumstances. Operators and schedulers review the percentages achieved during the day and adjust spill levels in later hours, with the objective of ending the day with a daily average spill percentage that achieves the specified spill percentage. #### **Minimum Generation** Both Snake and Columbia River dams have a minimum generation requirement that has been established to maintain power system stability and reliability. The Corps has identified minimum generation powerhouse outflow values derived from $\pm 1\%$ of best efficiency turbine operation tables and actual generation records when turbines were operating within $\pm 1\%$ of best efficiency (Table 1). Values stated in Table 1 are approximations that account for varying head or other small adjustments in turbine unit operation that may result in variations from the reported minimum generation flow and spill amount. Conditions that may result in minor variations include: - 1. Varying pool elevation: as reservoirs fluctuate within the operating range, flow rates through the generating unit change. - 2. Generating unit governor "dead band": the governor controls the number of megawatts the unit should generate, but cannot precisely control a unit flow; variations may be 1-2% of unit flow. These variations can affect minimum generation ranges included in Table 1. - 3. System disturbances: once a generator is online and connected to the grid, it responds to changes in system voltage and frequency. These changes may cause the unit to increase or decrease flow and generation slightly within an hour. Individual units operate differently from each other and often have unit specific constraints. - 4. Generation control systems regulate megawatt (MW) generation only; not flow through individual turbine units. All of the lower Snake River powerhouses may be required to keep one generating unit on line at all times for power system reliability under low river flow conditions, which may result in a reduction of spill at that project. These projects have two "families" of turbines with slightly different capacities – small and large. In most cases during low flow conditions, one of the smaller turbine units (with reduced generation and flow capabilities) will be online. The smaller turbine units are generally numbered 1–3 and are the first priority for operation during the fish passage season. If smaller turbine units are unavailable, larger units may be used. During low river flow events, the operating unit generally runs at the lower end of the $\pm 1\%$ of best efficiency range. In 2017, Lower Granite turbine unit 2 and Ice Harbor turbine unit 5 will have fixed blades (non-adjustable) and restricted operating ranges. The new minimum generation operation ranges will be determined and incorporated into the FPP after the units are returned to service. Little Goose Dam turbine unit 5 is restricted to operate in the upper $\pm 1\%$ range due to vibration issues at operating points below 120 MW. Ice Harbor turbine units experience cavitation at the lower end of the $\pm 1\%$ of best efficiency range, which damages the turbine runner and can be detrimental to fish. Therefore, Ice Harbor turbine units will operate to cavitation, which is typically just above the lower $\pm 1\%$ limit. Ice Harbor Dam turbine units 3 and 5 have fixed blades and are restricted to a narrower $\pm 1\%$ operating range. Minimum generation flow ranges at McNary, John Day, and The Dalles dams are 50-60 kcfs and 30-40 kcfs at Bonneville, as shown in Table 1. Table 1.— Minimum Generation Ranges for Turbine Units at Corps Hydropower Projects on the Lower Snake and Lower Columbia Rivers. | on the Lower Snake and Lower Columbia Rivers. Minimum Generation Range | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------|-------| | Project | Turbine Unit(s) | (kcfs) ^a | | | | | Lower | Upper | | Lower Granite | 2 ^b | TBD | TBD | | | 1, 3 | 11.8 | 12.9 | | | 4, 5, 6 | 13.7 | 14.8 | | Little Goose | 1, 2, 3 | 11.3 | 11.8 | | | 5° | 16.2 | 17.3 | | | 4, 6 | 13.8 | 14.4 | | Lower Monumental | 1, 2, 3 | 10.8 | 12.3 | | | 4, 5, 6 | 14.1 | 14.9 | | Ice Harbor | 1 | 8.4 | 9.8 | | | 2 ^d | na | na | | | 3 ^b | 11.4 | 12.5 | | | 5 ^b | TBD | TBD | | | 4, 6 | 9.4 | 10.6 | | McNary | N/A | 50 | 60 | | John Day | N/A | 50 | 60 | | The Dalles | N/A | 50 | 60 | | Bonneville | N/A | 30 | 40 | a. Resulting flow (kcfs) through turbines is a function of power output (MW), turbine efficiency and project head. Except for fixed units noted below, *Lower* flow limit equates to minimum 1% lower limit in the 2017 Fish Passage Plan tables. *Upper* flow limit calculated from Upper MW value at lowest project head. b. Unit 2 at Lower Granite and Units 3 and 5 at Ice Harbor have a restricted operation due to runner blades that are welded at a fixed angle (non-adjustable) to address linkage cracks from shear fatigue. c. Little Goose Unit 5 operation restricted to upper 1% range due to vibration issues at operating points <120 MW. d. Ice Harbor Unit 2 is out of service in 2017. #### **Low Flow Operations** Low flow operations at lower Snake and Columbia River projects are triggered when inflow is not sufficient to meet both minimum generation requirements and planned FOP spill levels listed in Tables 2 and 3. In these situations, Snake River projects will operate one turbine unit at the minimum generation outflow and spill the remainder of inflow at the project. Columbia River projects will also operate at minimum generation and pass the remaining inflow as spill down to minimum spill levels. As river flow transitions from higher flow to low flow, there may be situations when maintaining minimum generation and the target spill identified in Tables 2 and 3 may not be possible every hour, since these projects have limited flexibility. During the transition phase, flow may recede at a higher rate than forecasted and inflow provided by non-Federal projects upstream is often variable and uncertain. The combination of these factors may result in instances where unanticipated changes to inflow cause forebay elevations to go outside of the normal minimum operating pool (MOP) ranges for Snake River projects as provided for in the 2014 Supplemental BiOp. During low flow conditions when the navigation lock is being emptied at some projects, the total spill volume remains constant, but the spill reported as a percent of total flow may be temporarily reduced below the target spill percentage. This occurs because the volume of water needed to empty the navigation lock during periods of low flow is a greater percentage of the total flow than when river flow is higher. At Little Goose Dam, when daily average flow in the lower Snake River is \leq 32 kcfs, achieving 30% spill would require switching powerhouse operations between operating two units at the low end of the \pm 1% of best efficiency range to operating one unit at the high end of the \pm 1% of best efficiency range. This operation, in combination with constant inflow from Lower Granite Dam, often makes it difficult to achieve the FOP prescribed spill level downstream at Lower Monumental Dam and to also maintain MOP operations. In years past, through coordination with TMT during low flow periods, Little Goose spill operations changed from 30% to a constant spill level of approximately 7-11 kcfs to smooth out Little Goose outflow, meet Lower Monumental FOP specified spill levels, and maintain the MOP elevation at Little Goose. A similar operation will be implemented in 2017, if necessary, depending on river flow. #### **Operations during Rapid Load Changes** Project operations during hours when power system load and/or intermittent generation changes rapidly, may result in not meeting FOP specified hourly spill levels because projects must be available to respond to within-hour load variability to satisfy North American Electric Reliability Council (NERC) reserve requirements ("on response"). This usually occurs at McNary, John Day, and The Dalles dams. In addition to within-hour load variability, projects on response must be able to respond to within hour changes that result from intermittent generation (such as wind generation). During periods of rapidly changing loads and intermittent generation, projects on response may have significant changes in turbine flow within the hour, while the spill quantity remains the same within the hour. Under normal conditions, within-hour load changes occur mostly on hours immediately preceding and after the peak load hours; however, within-hour changes in intermittent generation can occur at any hour of the day. Due to the high variability of within-hour load and intermittent generation, these load swing hours may have a greater instance of reporting actual spill percentages that vary more than the $\pm 1\%$ requirement in other hours. # **Turbine Unit Testing around Maintenance Outages** Turbine units may be operationally tested for up to 30 minutes by running the unit at speed no load and various loads within the 1% of best efficiency range to allow for premaintenance measurements and testing, and to allow all fish to move through the unit. Units may be operationally tested after maintenance or repair, but before a unit comes out of a maintenance or forced outage status. This testing may consist of running the unit for up to 30 minutes before it is returned to operational status. Testing of a unit under maintenance is in addition to a unit operating at minimum generation required for power system reliability. Testing may deviate from unit operating priorities specified in FPP sections 2-9 and may use water that would otherwise be used for spill if the running unit for reliability is at the bottom of the $\pm 1\%$ of best efficiency range. Water will be used from the powerhouse outflow allocation if possible, and water diverted from spill for operational testing will be minimized. The Corps has previously coordinated this testing with the region through the Fish Passage Operations and Maintenance (FPOM) group and included in chapters 2-9 of the FPP. # **Navigation Safety** Short-term adjustments in spill may be required for navigation safety, primarily at the lower Snake projects, but may also be necessary at the lower Columbia projects. This may include changes in spill patterns, reductions in spill, or short-term spill curtailment. In addition, unsteady flow at Little Goose and Ice Harbor dams during low flow conditions may impact reservoir elevations at those projects and cause inadequate navigation depths at the downstream entrances to the Lower Granite and Lower Monumental navigation locks. As addressed in the 2014-2018 IP, adjustments to pool elevation in the Little Goose pool and Ice Harbor pool, of up to 1.0 ft. above the MOP operating range may be necessary to accommodate safe entrance to the navigation locks at Lower Granite and Lower Monumental dams during periods of low flow (approximately 50 kcfs or less) and will be coordinated in TMT. These adjustments may be necessary for both commercial tows and fish barges. #### JUVENILE FISH TRANSPORTATION PROGRAM OPERATIONS As noted above, the Corps' planned spill operations assume average runoff conditions. In previous years, the FOP provided that spill for fish passage would occur under all flow conditions. To improve survival of juvenile migrants, the 2014 Supplemental BiOp calls for an annual review of the previous year's fish survival information and discussion with the Regional Implementation Oversight Group (RIOG) to inform transport/spill operations for the subsequent year. After considering the best available information and taking into account input from regional sovereigns, the Corps will continue implementation of the juvenile fish transportation program operations at the Snake River collector projects in 2017. These operations will continue spill levels specified in Tables 2 and 3 independent of flow conditions. River flow and fish condition will be monitored, and if regional sovereigns recommend adjustments in spill and/or transportation operations that differ from those stated herein, the Corps will use the regional coordination process to make a determination on recommended operational changes. The following describes the proposed transportation operations for the lower Snake River projects. Detailed descriptions of project and transport facility operations to implement the juvenile fish transportation program are contained in the FPP Appendix B. # **Lower Snake River Dams - Operation and Timing** To achieve the 2014 Supplemental BiOp goal of transporting about 50% of juvenile steelhead, transportation will be initiated at Lower Granite, Little Goose, and Lower Monumental dams on May 1, or as coordinated with the TMT. The collection of fish at lower Snake River projects for transportation will commence on May 1. Barging of fish will begin the following day and collected juvenile fish will be transported from each facility on a daily or every-other-day basis (depending on the number of fish) throughout the migration season. Transportation operations will be carried out at each project in accordance with all relevant FPP operating criteria. Transportation and spill operations may be adjusted due to research, conditions at fish collection facilities such as overcrowding or temperature extremes, through the adaptive management process with FPOM and/or TMT to better match juvenile outmigration timing or achieve/maintain performance standards. #### **SPRING SPILL OPERATIONS** #### **Lower Snake River Projects** Spring spill will begin on April 3 at Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams. Spring spill operations will continue through June 20, as coordinated with the TMT in 2014. Spring spill levels for Snake River dams are shown in Table 2. #### **Lower Columbia River Projects** Spring spill will begin April 10 at McNary, John Day, The Dalles, and Bonneville dams. Spring spill operations will continue through June 15. Spring spill operations are shown in Table 2. #### SUMMER SPILL OPERATIONS # **Lower Snake River Projects** Summer spill will begin on June 21 at Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams and continue through August 31 at all four Snake River projects. Summer spill levels are shown in Table 3. #### **Lower Columbia River Projects** Summer spill will begin June 16 at McNary, John Day, The Dalles, and Bonneville dams and continue through August 31 at all four Columbia River projects. Summer spill levels are shown in Table 3. # PROJECT BY PROJECT OPERATIONS The following sections describe 2017 spill operations for each project. Included in the descriptions are planned research activities identified in the 2014 Supplemental BiOp. The Corps, regional fishery agencies, and Tribes are interested in the continuation of project research studies under the Corps' Anadromous Fish Evaluation Program (AFEP). These studies have been evaluated through the annual AFEP review process with the regional fishery agencies and Tribes, with the study designs being finalized prior to initiation in 2017. The studies are intended to provide further information on project survival that will help inform the region in making decisions on future operation and configuration actions to improve fish passage and survival and meet BiOp performance standards at the lower Snake and Columbia River dams. Table 2.— Summary of 2017 spring spill levels at lower Snake and Columbia River projects.³ | Project | Planned 2017 Spring Spill Operations (Day/Night) | | |------------------|------------------------------------------------------|--| | Lower Granite | 20 kcfs/20 kcfs | | | Little Goose | 30%/30% | | | Lower Monumental | Gas Cap/Gas Cap | | | | (approximate Gas Cap range: 20-29 kcfs) | | | Ice Harbor | April 3-April 28: 45 kcfs/Gas Cap | | | | April 28-June 20: 30%/30% vs. 45 kcfs/Gas Cap | | | | (approximate Gas Cap range: 75-95 kcfs) | | | McNary | 40%/40% | | | John Day | April 10-April 28: 30%/30% | | | | April 28-June 15: 30%/30% and 40%/40% | | | The Dalles | 40%/40% | | | Bonneville | 100 kcfs/100 kcfs | | le 2 summarizes the planned spring spill operations. More specific ³ Table 2 summarizes the planned spring spill operations. More specific detail governing project operations is included in project specific sections. 9 Table 3.— Summary of 2017 summer spill levels at lower Snake and Columbia River projects.⁴ | Project | Planned 2017 Summer Spill Operations
(Day/Night) | | |------------------|---|--| | Lower Granite | 18 kcfs/18 kcfs | | | Little Goose | 30%/30% | | | Lower Monumental | 17 kcfs/17 kcfs | | | Ice Harbor | June 21-July 13: 30%/30% vs. 45 kcfs/Gas Cap | | | | July 13-August 31: 45 kcfs/Gas Cap | | | | (approximate Gas Cap range: 75-95 kcfs) | | | McNary | 50%/50% | | | John Day | June 16-July 20: 30%/30% and 40%/40% | | | | July 20-August 31: 30%/30% | | | The Dalles | 40%/40% | | | Bonneville | 85 kcfs/121 kcfs and | | | | 95 kcfs/95 kcfs | | # **Lower Granite** Spring Spill Operations April 3 through June 20: 20 kcfs 24 hours per day. Summer Spill Operations June 21 through August 31: 18 kcfs 24 hours per day. # **Changes in Operations for Research Purposes:** • Research operations: There are no special spill operations for research planned in 2017. Established spill patterns as described in FPP Section 9 will be used. #### **Operational Considerations:** - When involuntary spill occurs, there may be periods where spill levels create unsafe hydraulic conditions for commercial, non-commercial, and fish transportation barges entering and exiting the tailrace and/or while moored at the fish loading facility. If such runoff conditions occur, spill may be reduced temporarily when fish transport barges approach or leave the barge docking area or are moored at loading facilities. If conditions warrant a spill reduction for any navigational passage, Lower Granite pool MOP elevation restrictions may be temporarily exceeded until the barge/vessel exits the tailrace safely and spill resumes. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Maintenance dates are subject to change. _ ⁴ Table 3 summarizes the planned summer spill operations. More specific detail governing project operations is included in project specific sections. # **Little Goose** **Spring Spill Operations April 3 through June 20:** 30% spill 24 hours per day. The spillway weir closure gate will be raised as soon after 0630 hours on April 3 as weather permits. Summer Spill Operations June 21 through August 31: 30% spill 24 hours per day. #### **Changes in Operations for Research Purposes:** • Research operations: There are no special spill operations for research planned in 2017. Established spill patterns as described in FPP Section 8 will be used. # **Operational Considerations:** - Daily average flows in the lower Snake River of ≤32 kcfs can result in incompatible operations with Lower Monumental Dam and cause spill quantity fluctuations. Alternative Little Goose operations to resolve this issue are described in the Low Flow Operations section above and will be coordinated through the FPOM/TMT. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Maintenance dates are subject to change. - Turbine Unit 1 Operation: See item 4.1.2.2 in FPP Section 8. #### **Lower Monumental** **Spring Spill Operations April 3 through June 20:** Spill to the 115/120% gas cap 24 hours per day using the bulk spill pattern (see Operational Considerations). **Summer Spill Operations June 21 through August 31:** 17 kcfs 24 hours per day. # **Changes in Operations for Research Purposes:** <u>Research operations</u>: There are no special spill operations for research planned in 2017. Established spill patterns as described in FPP Section 7 will be used. - From mid-May through early-June, depending on juvenile sockeye run timing, spill using the uniform spill pattern when possible to reduce the number of juvenile sockeye collected for transport.⁵ - When total river flow is likely to exceed turbine capacity and spill over the 120% gas cap (occurs at a total river flow of ~140 kcfs) for three or more days, the project will ⁵ This operation (SOR 2016-1A) was proposed, coordinated through the TMT, and implemented in 2016. SOR 2016-1A can be found at: http://www.nwd-wc.usace.army.mil/tmt/sor/2016/ - use the uniform spill pattern. The uniform pattern may also be used if spill over the 120% gas cap is required due to "lack of demand" spill at any river flow level. - Daily average flows of ≤32 kcfs can result in incompatible operations with Little Goose Dam and may cause spill quantity fluctuations. - Transit of the juvenile fish barge across the Lower Monumental tailrace, then docking at and departing from the fish collection facility, may require spill level to be reduced due to safety concerns. The towboat captain may request that spill level be reduced or eliminated during transit. During juvenile fish loading operations, spill is typically reduced to 15 kcfs, but can be reduced further if necessary for safety reasons. Barge loading duration can be up to 3.5 hours. Because of the time needed to complete loading at Lower Monumental, the Little Goose Project personnel will notify the Lower Monumental personnel when the fish barge departs from Little Goose. This ensures that BPA scheduling is provided advance notice for spill control at Lower Monumental Dam. Reducing spill may cause the Lower Monumental pool to briefly operate outside of MOP elevations. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Maintenance dates are subject to change. #### **Ice Harbor** **Spring Spill Operations April 3 through June 20:** Spill will begin at 45 kcfs day/gas cap night on April 3 and continue until April 28. On April 28, spill will alternate between 2-day blocks of 45 kcfs day/gas cap night and 30% /30% with the spillway weir operating and continue through the spring season. Nighttime spill hours are 1800–0500. **Summer Spill Operations June 21 through August 31:** Spill operations will continue from spring at 30% 24 hours per day vs. 45 kcfs day/Gas Cap night until July 13 at 0500 hours, then 45 kcfs day/Gas Cap night through August 31. # **Changes in Operations for Research Purposes:** • Research operations: There are no special spill operations for research planned in 2017. Spill patterns as described in FPP Section 6 will be used. - Spill operation treatments may be rearranged within a week throughout the season. If rearrangement of treatments occurs, the total number of each spill level treatment for the spring season will not change. The flexibility to rearrange treatments during periods of higher power demand may alleviate the need to declare a power emergency. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Dates are subject to change. - Submersible Traveling Screens (STSs) will be installed by April 1. The normal juvenile bypass operation will be to route fish through the full flow bypass pipe, which has interrogation capability to monitor for PIT tags. From April 1 through July 31, juvenile fish will be sampled no fewer than every 3 to 5 days to monitor fish condition and then bypassed to the river. Sampling activity may be terminated early should juvenile bypass fish numbers drop to the point where valid sampling is no longer feasible (100 fish of the most dominant species present are needed to properly assess fish condition). Sampling may also cease if the cumulative number of fish sampled for the season reach the permitted maximum. #### **McNary** **Spring Spill Operations April 10 through June 15:** 40% spill 24 hours per day with the two spillway weirs operating. A spillway weir will be operated in both spillbay 19 and spillbay 20 for the period April 10 through June 7. As in past years, both spillbay weirs will be removed from service on June 8 (or next business day as coordinated through the FPOM) for the benefit of subyearling Chinook. This operational change will be coordinated through the FPOM. Temporary spill pattern changes to allow removal of the spillway weirs will occur, however spill will continue at 40% during the spillway weir removal process using the spill pattern identified in FPP Table MCN-10. Following removal of the spillway weirs, the spill pattern contained in Table MCN-9 in FPP section 5 will be used for the remainder of the spring. **Summer Spill Operations June 16 through August 31:** 50% spill 24 hours per day without spillway weirs. #### **Changes in Operations for Research Purposes:** • Research operations: There are no special spill operations for research planned in 2017. Spill patterns as described in FPP Section 5 will be used. - The normal juvenile fish bypass system operation will be to bypass fish through the full flow bypass pipe back to the river, which has interrogation capability to monitor for PIT tags. Every other day, however, in order to sample fish for the Smolt Monitoring Program, fish will be routed through the separator, interrogated for PIT tags, and then bypassed to the river. - All extended-length submersible bar screens (ESBSs) at McNary will be installed by April 15 as agreed to in consultation with FPOM, the Tribes, and NOAA. This is part of the Corps' consideration of lifting (or waiting to install) some turbine intake screens during periods of significant juvenile lamprey passage. Effects to both salmon and lamprey have been considered. Although there are some adverse impacts to migrating salmon from this delay in screen installation, regional sovereigns have considered this acceptable in balancing the needs of multiple species. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Dates are subject to change. # John Day **Spring Spill Operations April 10 through June 15:** 30% spill 24 hours per day will begin on April 10 and continue until the alternating two-treatment operation begins on approximately April 27. During the two-treatment operation, spill 30% and 40% 24 hours per day for the remainder of spring. Spill levels will alternate between 30% and 40% spill in 4-day blocks with two-day treatments. Spill level changes will occur at 2000 hours. **Summer Spill Operations June 16 through August 31:** Spill operations will continue from spring at 30% and 40% spill 24 hours per day and continue through approximately July 20. Spill levels will alternate in a four-day block with two-day treatments (30% or 40% spill). Spill treatment changes will occur at 2000 hours. A single-treatment operation of 30% spill 24 hours per day will begin approximately July 20 and continue through August 31. # **Changes in Operations for Research Purposes:** • Research operations: There are no special spill operations for research planned in 2017. Established spill patterns as described in FPP Section 4 will be used. #### **Operational Considerations:** - Spill operation treatments may be rearranged within a week throughout the season. If rearrangement of treatment occurs, the total number of each spill level treatment for the spring season will not change. The flexibility to rearrange treatments during periods of higher power demand may alleviate the need to declare a power emergency. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Maintenance dates are subject to change. #### **The Dalles** **Spring Spill Operations April 10 through June 15:** 40% spill 24 hours per day. Summer Spill Operations June 16 through August 31: 40% spill 24 hours per day. #### **Changes in Operations for Research Purposes:** • Research operations: There are no special spill operations for research planned in 2017. Established spill patterns as described in FPP Section 3 will be used. #### **Operational Considerations:** • If total river flow is between 92 and 161 kcfs, the spill percentage could range from 38.6 to 41.4 percent. When operating to a spill cap level below the target 40 percent of total flow operation, actual spill levels at The Dalles may range up to ±3 kcfs. • At no time is spill recommended on the south side of the spillway (Bays 9-23) as this creates a poor tailrace egress condition for spillway-passed fish. - Spill bays 9, 10, 11, 13, 16, 18, 19, and 23 are operationally restricted due to wire rope, structural and concrete erosion concerns. - The spill pattern in the FPP is based on a nominal forebay elevation at The Dalles Dam of 158.5 feet. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Maintenance dates are subject to change. - Spill gate changes will be limited to one change per hour to minimize wear and tear on gates and wire ropes. #### **Bonneville** **Spring Spill Operations April 10 through June 15:** 100 kcfs spill 24 hours per day. **Summer Spill Operations June 16 through August 31:** Summer spill operations will alternate every two days between 85 kcfs/121 kcfs and 95 kcfs 24 hours per day. #### **Changes in Operations for Research Purposes:** • Research operations: There are no special spill operations for research planned in 2017. Established spill patterns as described in FPP Section 2 will be used. - Minimum spill level is 50 kcfs; however, as in past years, under extreme low flow conditions lower spill levels may be considered and coordinated through the TMT. This is to provide acceptable juvenile fish egress conditions in the tailrace. - The TMT will consider the possible effects of TDG on emerging chum salmon downstream of Bonneville Dam. The TMT may request special operations such as flow increases or spill reductions to protect ESA-listed fish. - Unit outages may occur for required or emergency unscheduled maintenance activities described in FPP Appendix A. Maintenance dates are subject to change. - Actual spill levels at Bonneville Dam may range up to ±3 kcfs. A number of factors influence this including hydraulic efficiency, exact gate opening calibration, spillway gate hoist cable stretch due to temperature changes, and forebay elevation (a higher forebay results in a greater volume of spill since more water can pass under the spill gate). - The second powerhouse Corner Collector (5 kcfs flow) will begin operation no later than the morning of April 10 and continue through the remainder of the spill season as coordinated through the FPOM. - High river flow and excessive debris load at the second powerhouse may require removal of submersible traveling screens (STSs) and vertical barrier screens (VBSs) according to criteria described in FPP Section 2 in coordination with the FPOM. #### TRANSPORT RESEARCH # **Seasonal Effects of Transport** A study will be conducted to determine seasonal effects of transporting fish from the Snake River to optimize a transportation strategy. At Lower Granite, fish will be collected for this study starting on April 3, with marking beginning on April 4. Depending on the number of fish available, fish will be collected 1-2 days each week with tagging occurring on the day following collection. A barge will leave each Thursday morning with all fish collected during the previous 1-3 days. By barging all fish (minus the in-river group) during 1 to 3 days of collection, barge densities will be maintained at a level similar to what would occur under normal transport operations that time of year. This pattern will occur in the weeks preceding general transportation and will be incorporated into general transportation once that operation begins. The desired transported sample size is 6,000 wild Chinook, 4,000-6,000 wild steelhead, and 4000-6000 hatchery steelhead weekly for approximately eight weeks. #### **EMERGENCY PROTOCOLS** The Corps and the Bureau of Reclamation will operate the projects in emergency situations in accordance with the WMP Emergency Protocol (WMP Appendix 1). This protocol identifies the process the Action Agencies will use in the event of an emergency concerning the operation of FCRPS that impacts planned fish protection measures. The most recent version of the Emergency Protocols is located at: http://www.nwd-wc.usace.army.mil/tmt/documents/wmp/2017/Final/emerproto #### COORDINATION To make adjustments in response to changes in conditions, the Corps will utilize the existing regional coordination committees. Changes in spill levels when flow conditions are higher or lower than anticipated will be coordinated through the TMT. This could include potential issues and adjustments to the juvenile fish transportation program. Spill patterns and biological testing protocols that have not been coordinated to date will be finalized through the Corps' AFEP subcommittees, which include the SRWG, FFDRWG, and FPOM. #### REPORTING The Corps provides monthly FOP implementation reports and they may be found on the following website: http://www.nwd-wc.usace.army.mil/tmt/. The updates will include the following information: - the hourly flow through the powerhouse; - the hourly flow over the spillway compared to the spill target for that hour; and, - the resultant 12-hour average TDG for the tailwater at each project and for the next project's forebay downstream. The updates will also provide information on substantial issues that arise as a result of the spill program (e.g. Little Goose adult passage issues in 2005 and 2007), and will address any emergency situations that arise. The Corps will continue to provide the following data to the public regarding project flow, spill rate, TDG level, and water temperature. - Flow and spill quantity data for the lower Snake and Columbia River dams are posted to the following website every hour: http://www.nwd-wc.usace.army.mil/report/projdata.htm - Water Quality: TDG and water temperature data are posted to the following website every hour: http://www.nwd-wc.usace.army.mil/report/total.html. These data are received via satellite from fixed monitoring sites in the Columbia and Snake rivers every hour, and placed on a Corps public website upon receipt. Using the hourly TDG readings for each station in the lower Snake and Columbia rivers, the Corps will calculate both the highest and highest consecutive 12-hour average TDG levels daily for each station. These averages are reported at: http://www.nwd-wc.usace.army.mil/ftppub/water_quality/12hr/